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Abstract

Motivated by the problem of sustaining cooperation in large communities with lim-

ited information, we analyze the relationship between population size, monitoring, and

incentive instruments in moral hazard problems and repeated games with individual-

level noise. We identify the per-capita channel capacity of the monitoring structure as

a key determinant of the possibility of cooperation. In repeated games, cooperation is

impossible if per-capita channel capacity is much smaller than discounting. Conversely,

for a class of monitoring structures, a folk theorem holds when per-capita channel ca-

pacity is much larger than discounting. If attention is restricted to linear perfect public

equilibria (which model collective incentive-provision), cooperation is possible only un-

der much more severe parameter restrictions. Analogous results hold for static moral

hazard problems with many agents and bounded rewards.
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Two neighbours may agree to drain a meadow which they possess in common;

because it is easy for them to know each other’s mind; and each must perceive

that the immediate consequence of his failing in his part is the abandoning of the

whole project. But it is very diffi cult, and indeed impossible, that a thousand

persons should agree in any such action; it being diffi cult for them to concert so

complicated a design, and still more diffi cult for them to execute it; while each

seeks pretext to free himself of the trouble and expense, and would lay the whole

burden on others.

– David Hume, A Treatise of Human Nature

1 Introduction

Hume’s intuition notwithstanding, large groups of individuals often have a remarkable ca-

pacity for cooperation, even in the absence of external contractual enforcement (Ostrom,

1990; Ellickson, 1991; Seabright, 2004). Cooperation in large groups usually seems to rely

on accurate monitoring of individual agents’actions, together with sanctions that narrowly

target deviators. These are key features of the community resource management settings

documented by Ostrom (1990), as well as the local public goods provision environment stud-

ied by Miguel and Gugerty (2005), who in a development context found that parents who

fell behind on their school fees and other voluntary contributions faced social sanctions.1

Large cartels appear to operate on similar principles. For example, the Federation of Que-

bec Maple Syrup Producers– a government-sanctioned cartel that organizes more than 7,000

producers, accounting for over 90% of Canadian maple syrup production– strictly monitors

its members’ sales, and producers who violate its rules regularly have their sugar shacks

searched and their syrup impounded, and can also face fines, legal action, and ultimately the

seizure of their farms (Kuitenbrouwer, 2016; Edmiston and Hamilton, 2018). In contrast,

we are not aware of any evidence that individual maple syrup producers– or the parents

studied by Miguel and Gugerty, or the farmers, fishers, and herders studied by Ostrom– are

motivated by the fear of starting a price war or other general breakdown of cooperation.

The principle that large-group cooperation requires precise monitoring and personalized

1Similar effects have also been found in the context of group lending (Karlan, 2007; Feigenberg, Field,
and Pande, 2013).
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sanctions seems like common sense, but it is not reflected in current repeated game models.

The standard analysis of repeated games with patient players (e.g., Fudenberg, Levine, and

Maskin, 1994; henceforth FLM) fixes all parameters of the game except the discount factor

δ and considers the limit as δ → 1. This approach does not capture situations where, while

players are patient (δ ≈ 1), they are not necessarily patient in comparison to the population

size N (so (1− δ)N may or may not be close to 0). In addition, since standard results are

based on statistical identification conditions that hold generically regardless of the number

of players, they also do not capture the possibility that more information may be required

to support cooperation in larger groups. Finally, since there is typically a vast multiplicity

of cooperative equilibria in the δ → 1 limit, standard results also say little about what kind

of strategies must be used to support large-group cooperation: for example, whether it is

better to rely on personalized sanctions (e.g., fines) or collective ones (e.g., price wars).

This paper extends the standard analysis of repeated games with imperfect public mon-

itoring by letting the population size, discount factor, stage game, and monitoring structure

all vary together. These aspects of the repeated game can vary in a flexible manner: we

assume only a uniform upper bound on the magnitude of the players’stage-game payoffs and

a uniform lower bound on the amount of “individual-level noise.”Our main results provide

necessary and suffi cient conditions for cooperation as a function of N , δ, and a measure of

the “informativeness”of the monitoring structure. We also show that cooperation is possible

only under much more restrictive conditions if society exclusively relies on collective sanc-

tions, such as price wars (or, a la Hume, “the abandoning of the whole project”). In sum,

we show that large-group cooperation requires a lot of patience and/or a lot of information,

and cannot be based on collective sanctions for reasonable parameter values.

We now preview our main ideas and results. We model individual-level noise by assum-

ing that each player i’s action ai stochastically determines an individual-level outcome xi,

independently across players, and that the distribution of observed signals y (the outcome

monitoring structure) depends on the action profile a = (ai) only through the outcome

profile x = (xi). This setup follows earlier work by Fudenberg, Levine, and Pesendorfer

(1998; henceforth FLP) and al-Najjar and Smorodinsky (2000, 2001; henceforth A-NS). We

find that a useful measure of the informativeness of the outcome monitoring structure is

its channel capacity, C. This is a standard measure in information theory, which in our

context is defined as the maximum expected reduction in uncertainty (entropy) about the
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outcome profile x that results from observing the signal y. Channel capacity obeys the ele-

mentary inequality C ≤ log |Y |, where Y is the set of possible signal realizations. Due to this
inequality, using channel capacity permits more general results as compared to measuring

informativeness by the number of possible signal realizations (as FLP and A-NS do). At

the same time, channel capacity is convenient to work with, as it lets us apply tools from

information theory such as Pinsker’s inequality and the chain rule for mutual information,

which play key roles in our analysis.

We begin by considering static moral hazard problems with individual-level noise, many

agents, and an exogenous bound on rewards, w̄. This static analysis develops many of the

ideas used in our repeated games results in a simple and canonical context. Our first result

(Theorem 1) is that if w̄2C/N– the product of the square of the reward bound w̄ and the per-

capita channel capacity C/N– is small, then cooperation is impossible: all implementable

outcomes are consistent with approximately myopic play. This relationship among w̄, C, and

N is tight (Theorem 2). We then model collective incentive-provision by restricting all players

to receive the same reward. This restriction makes a bang-bang reward structure optimal, so

increasing C beyond log (2) (i.e., one bit) is no longer valuable, but the restriction does not

have a large effect on the relationship between w̄ and N required to support cooperation.

However, if in addition the expected reward is required to be bounded independent of w̄

and N , then cooperation is impossible if there exists ρ > 0 such that w̄/ exp (N1−ρ) is small

(Theorem 3).2 Since this condition holds even if N → ∞ much slower than w̄ → ∞, we
interpret this result as a near-impossibility theorem for large-group cooperation based on

collective incentives.

We then turn to repeated games. Here, our first result (Theorem 4) is that cooperation is

impossible if C/ ((1− δ)N) is small. Thus, the condition for cooperation in a repeated game

with discount factor δ is the same as that in a static game with reward bound w̄ = (1− δ)−1/2.

This result builds on a general necessary condition for cooperation in repeated games that

we establish in a companion paper (Sugaya and Wolitzky, 2023a; henceforth SW). Compared

to that result, the key difference is that here we consider games with individual-level noise,

which allows a connection between the main information measure in SW (the χ2-divergence

of the signal distribution following a deviation from the equilibrium signal distribution) and

2In contrast, requiring bounded expected rewards does not effect the conclusion of Theorem 1 or (when
C is proportional to N) Theorem 2.
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the channel capacity of the outcome monitoring structure.

Our next result (Theorem 5) provides a partial converse to Theorem 4 for a specific

monitoring structure: random monitoring, where in each period a certain number M out

of the N players are chosen at random and their outcomes are perfectly revealed, while

nothing is learned about the other players’ outcomes. Under random monitoring, chan-

nel capacity is proportional to the number of monitored players M , and we show that if

M/ ((1− δ)N log (N)) is large then cooperation is possible: a large set of payoffs arise as

perfect equilibria in the repeated game, i.e., a folk theorem holds. This result implies that

the condition on δ, N , and C in Theorem 4 is tight up to log (N) slack. Moreover, while ran-

dom monitoring is admittedly special, in Appendix D we generalize Theorem 5 to a similar

result that holds for any product-structure monitoring (Theorem 7).

Our final result (Theorem 6) considers the implications of restricting society to collective

incentives in repeated games. We formalize this restriction by focusing on linear perfect

public equilibria, where all on-equilibrium-path continuation payoff vectors lie on a line in

RN . When the stage game is symmetric and the line in question is the 45◦ line, linear

equilibria reduce to strongly symmetric equilibria, which are a standard model of collusion

through the threat of price wars (Green and Porter, 1984; Abreu, Pearce, and Stacchetti,

1986; Athey, Bagwell, and Sanchirico, 2004). We show that if there exists ρ > 0 such that

(1− δ) exp (N1−ρ) is large, then all equilibrium payoffs are consistent with approximately

myopic play.3 This result is analogous to the bounded-expected-rewards case of Theorem 3.

1.1 Related Literature

Prior research on repeated games has established folk theorems in the δ → 1 limit for fixed

N , as well as “anti-folk”theorems in the N → ∞ limit for fixed δ, but has not considered

the case where N and δ vary together.

The closest paper is our companion work, SW. That paper establishes general necessary

and suffi cient conditions for cooperation in repeated games as a function of discounting and

monitoring. Relative to SW, the current paper introduces two features that are specific

to large-population games: individual-level noise and the possibility that N varies together

3It is well-known that strongly symmetric equilibria are typically less effi cient than general perfect public
equilibria. Our result is instead that the relationship between N and δ required for any non-trivial incentive
provision differs dramatically between strongly symmetric/linear equilibria and general ones.
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with discounting and monitoring. Individual-level noise is crucial for our anti-folk theorems

(Theorems 1 and 4), while letting N vary with discounting and monitoring is the key novelty

in our folk theorems (Theorems 5 and 7).

The most relevant folk theorems are due to FLM, Kandori and Matsushima (1998), and

SW. However, these papers fix the stage game while taking δ → 1 (and also letting monitoring

vary, in the case of SW), and their proof approach does not easily extend to the case where

N and δ vary together. Our proof of Theorems 5 and 7 takes a different approach, which is

based on “block strategies”as in Matsushima (2004) and Hörner and Olszewski (2006), and

involves a novel application of some large deviations bounds.

Other than that in SW, the most relevant anti-folk theorems are those of FLP, A-NS,

Pai, Roth, and Ullman (2014), and Awaya and Krishna (2016, 2019). Following earlier work

by Green (1980) and Sabourian (1990), these papers establish conditions under which play is

approximately myopic as N →∞ for fixed δ.4 These conditions can be adapted to the case

where N , δ, and monitoring vary together, but the results so obtained are weaker than ours,

and are not tight up to log terms. The key difference is that these results rely on bounds on

the strength of players’incentives that have a worse order in 1− δ than that given in SW. In
sum, prior work has established anti-folk theorems as N → ∞ for fixed δ, while our paper

tightly (up to log terms) characterizes the tradeoff among N , δ, and monitoring.5

Since the monitoring structure varies with δ in our model, we also relate to repeated

games with frequent actions, where the monitoring structure varies with δ in a particular,

parametric manner (e.g., Abreu, Milgrom, and Pearce, 1991; Fudenberg and Levine, 2007,

2009; Sannikov and Skrzypacz, 2007, 2010). The most relevant results here are Sannikov

and Skrzypacz’s (2007) theorem on the impossibility of collusion with frequent actions and

Brownian noise, as well as a related result by Fudenberg and Levine (2007). These results

relate to our anti-folk theorem for linear equilibrium, as we explain in Section 4.4.6

In Sugaya and Wolitzky (2021), we studied the relationship among N , δ, and monitoring

in repeated random-matching games with private monitoring and incomplete information,

4Awaya and Krishna instead establish conditions under which cheap talk is valuable. Green and
Sabourian’s papers impose a continuity condition on the mapping from action distributions to signal distri-
butions. Continuity is implied by FLP/a-NS’s individual noise assumption.

5Farther afield, there is also work suggesting that repeated-game cooperation is harder to sustain in larger
groups based on evolutionary models (e.g., Boyd and Richerson, 1988), simulations (e.g., Bowles and Gintis,
2011; Chapter 4), and experiments (e.g., Camera, Casari, and Bigoni, 2013).

6Another somewhat related question is the rate of convergence of the equilibrium payoff set as δ → 1
(Hörner and Takahashi, 2016; Sugaya and Wolitzky, 2023b).
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where each player is “bad”(i.e., a Defect commitment type) with some probability. In that

model, society has enough information to determine which players are bad after a single

period of play, but this information is disaggregated, and supporting cooperation requires

suffi ciently quick information diffusion. In contrast, the current paper has complete informa-

tion and public monitoring, so the analysis concerns monitoring precision (the “amount”of

information available to society) rather than the speed of information diffusion (the “distri-

bution”of information). In general, whether the key obstacle to cooperation is that societal

information is insuffi cient or disaggregated distinguishes “large-population repeated games,”

such as FLP, A-NS, and the current paper, from “community enforcement”models, such as

Kandori (1992), Ellison (1994), and our earlier paper.

Finally, we also contribute to the literature on static moral hazard in teams (Alchian

and Demsetz, 1972; Holmström, 1982), especially the branch that considers the implications

of limited information for team size and organizational structure. For example, Calvo and

Wellisz (1978) and Qian (1994) model the “span of control”of a manager in an organizational

hierarchy as the number of immediate subordinates that she can monitor or control. Our

results suggest an interpretation in terms of information or attention: if a manager can

extract at most C bits of information about the performance of N subordinates, then,

whenever there is some noise in the subordinates’performance, the maximum number of

subordinates that the manager can incentivize with any contract with bounded rewards is

of order C.

2 Moral Hazard in Large Teams

We begin by considering static games with individual-level noise, imperfect monitoring, and

bounded rewards.

The Game. The game to be played involves a finite set of players I = {1, . . . , N}, a
finite product set of actions A = ×i∈IAi, and a payoff function ui : A → R for each i ∈ I.
The interpretation is that ui (a) is player i’s expected payoff at action profile a. We denote

the range of player i’s payoff function by ūi = maxa,a′ ui (a) − ui (a′). We also assume that
|Ai| ≥ 2 for all i.

Noise. There is a finite product set of individual outcomes X = ×i∈IXi and a row-
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stochastic noise matrix πi ∈ [0, 1]Ai×Xi for each player i such that, when action profile a ∈ A
is played, outcome profile x ∈ X is realized with probability πa,x =

∏
i π

i
ai,xi

. We call the

pair (X, π) a noise structure. Let πi = minai,xi π
i
ai,xi

and assume that mini π
i > 0: we call

this assumption individual-level noise. The point of this setup is that signals will depend on

a only through x. Note that, since |Ai| ≥ 2 for all i, we have π ≤ 1/2.

For a natural example of a noise structure, suppose that there is some independent noise

in the execution of the players’actions, so that ai is player i’s intended action and xi is her

realized action. In this case, X = A, and πai,a′i is the probability that player i “trembles”to

a′i when she intends to take ai. We refer to this example as noisy actions.

For any ū > 0 and π > 0, the game is (ū, π)-bounded if the range of payoffs is bounded

above by ū and individual-level noise is bounded below by π: that is, if ūi ≤ ū and πi ≥ π

for all i. We also call a game ū-bounded or π-bounded when only one of these bounds is

imposed. Note that π-boundedness implies that |Xi| ≤ 1/π for all i.

Monitoring. An outcome monitoring structure (Y, q) consists of a finite set of possible

signal realizations Y and a family of conditional probability distributions q (y|x). The signal

distribution thus depends only on the realized outcome profile. The outcome monitoring

structure (Y, q) is a primitive object in our model: we are interested in properties of (Y, q)

that (together with the other model primitives) are necessary or suffi cient for supporting

cooperative outcomes.

Given an outcome monitoring structure (Y, q), we denote the probability of signal profile

y at action profile a by p (y|a) =
∑

x πa,xq (y|x). We refer to the pair (Y, p) as the action

monitoring structure induced by (X, π, Y, q). The action monitoring structure (Y, p) is a

derived object in our model: it plays an important role in our analysis, but we will avoid

imposing assumptions directly on (Y, p), and instead consider the implications of properties

of the noise structure (X, π) and the outcome monitoring structure (Y, q) for (Y, p).7

Without loss, we assume that for every y ∈ Y , there exists x ∈ X such that q (y|x) > 0.

Since πi > 0 for each i, this implies that p has full support: p (y|a) > 0 iff y ∈ Y .

Contracts. A contract for player i is a function wi : A × Y → R specifying a reward
7In SW, we allow general monitoring structures and directly consider properties of the action monitoring

structure (Y, p). The current paper imposes the additional structure that (Y, p) factors into a noise structure
(X,π) and an outcome monitoring structure (Y, q). This additional structure lets us formulate the individual-
level noise assumption.
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wi (a, y) for player i when action profile a is recommended and signal y realizes. A contract

is a collection w = (wi). We assume that rewards are non-negative and bounded from above:

there exists w̄ > 0 such that wi (a, y) ∈ [0, w̄] for all i, a, y. We say that a contract is public

if it depends only on y, so that w (a, y) = w (ã, y) for all a, ã, y.

Equilibrium. A manipulation for a player i is a mapping si : Ai → ∆ (Ai). The inter-

pretation is that when player i is recommended ai, she instead plays si (ai). A distribution

over action profiles α ∈ ∆ (A) is a correlated equilibrium if there exists a contract w such

that, for any player i and manipulation si,

∑
a,y

α (a) (ui (a) + p (y|a)wi (a, y)) ≥
∑
a,y

α (a) (ui (si (ai) , a−i) + p (y|si (ai) , a−i)wi (a, y)) .8

(1)

We say that a correlated equilibrium is public if α ∈
∏

i ∆ (Ai) and there exists a public

contract satisfying (1) for all i, si.

Mutual Information and Channel Capacity. Given a distribution of outcomes

ξ ∈ ∆ (X), a standard measure of the informativeness of a signal y about the realized

outcome x is the mutual information between x and y, defined as

I (ξ) =
∑

x∈X,y∈Ȳ

ξ (x) q (y|x) log

(
q (y|x)∑

x′∈X ξ (x′) q (y|x′)

)
.9

Mutual information measures the expected reduction in uncertainty (entropy) about x that

results from observing y. The mutual information between x and y is an endogenous object

in our model, as it depends on the distribution ξ of x, which in turn is determined by the

players’actions, a. Next, denote the set of outcome distributions ξ that can arise for some

action distribution α under noise structure (X, π) by

ϑ =

{
ξ ∈ ∆ (X) : ∃α ∈ ∆ (A) such that ξ (x) =

∑
a∈A

α (a) πa,x for all x ∈ X
}
.

8Here and throughout, ui and p are linearly extended to mixed actions, as usual.
9In this paper, all logarithms are base e.
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Finally, define the channel capacity of the tuple (X, π, Y, q) as

C = max
ξ∈ϑ

I (ξ) .

Channel capacity is an exogenous measure of the informativeness of y about x, as it is defined

as a function of only the noise structure (X, π) and the outcome monitoring structure (Y, q).10

Note that C is no greater than the entropy of the signal y, which in turn is at most log |Y |
(Theorem 2.6.3 of Cover and Thomas, 2006; henceforth CT). Channel capacity plays a

central role in information theory, because it is the maximum rate at which information can

be transmitted over a noisy channel (Shannon’s channel coding theorem, CT Theorem 7.7.1).

Our analysis does not use this theorem; we only use channel capacity as an exogenous upper

bound on mutual information. In turn, mutual information arises in our analysis because

it obeys useful properties, in particular the chain rule (CT, Theorem 2.5.2) and Pinsker’s

inequality (CT, Lemma 11.6.1). These properties play key roles in our analysis.11

Almost-Myopic Play. Player i’s gain from manipulation si at an action profile distri-

bution α ∈ ∆ (A) is

gi (si, α) =
∑
a

α (a) (ui (si (ai) , a−i)− ui (a)) .

Note that α is a correlated equilibrium iff there exists w such that

gi (si, α) ≤
∑
a,y

α (a) (p (y|a)− p (y|si (ai) , a−i))wi (a, y) for all i, si.

Player i’s maximum gain at α ∈ ∆ (A) is ḡi (α) = maxsi:Ai→∆(Ai) gi (si, α). For any ε > 0,

10We define C as the maximum of I (ζ) over ζ ∈ ϑ rather than ζ ∈ ∆ (X), because only ζ ∈ ϑ can ever
arise. This definition makes our results stronger than they would be if we instead took the maximum over
all ζ ∈ ∆ (X).
11We are not aware of prior papers that employ entropy methods in static moral hazard problems. In

repeated games, these methods have been used to study issues including complexity and bounded recall
(Neyman and Okada, 1999, 2000; Hellman and Peretz, 2020), communication (Gossner, Hernández, and
Neyman, 2006), and reputation effects (Gossner, 2011; Ekmekci, Gossner, and Wilson, 2011; Faingold,
2020). However, other than sharing a reliance on entropy methods, our analysis is not very related to these
papers’.
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the set of ε-myopic action distributions is

A (ε) =

{
α ∈ ∆ (A) :

1

N

∑
i

ḡi (α) ≤ ε

}
,

and the set of ε-myopic payoff vectors is

V (ε) =
{
v ∈ RN : v = u (α) for some α ∈ A (ε)

}
.

That is, an action distribution α is ε-myopic if the per-player average deviation gain at α

is less than ε. If the game is symmetric and α is a symmetric distribution, this definition

implies that all players have small deviation gains. Otherwise, it allows a few players to have

large gains. We discuss this point further in Section 5.1, following our results.

3 Conditions for (Non-)Cooperation in Moral Hazard

Our first result says that if per-capita channel capacity is much smaller than the ratio of noise

and the (squared) maximum reward, then equilibrium play is almost-myopic. Cooperation

in large groups thus requires a lot of information or large rewards.

Theorem 1 Every correlated equilibrium in a π-bounded game is ε-myopic, for

ε = (1− 2π)

√
2w̄2C

πN
.

Theorem 1 is similar to earlier results by FLP and A-NS. The main difference is measuring

information by channel capacity rather than the number of possible signal realizations. The

approach of these papers would yield log |Y | in place of
√
C in Theorem 1, which gives

a considerably weaker result as
√
C � C ≤ log |Y |. Moreover, in addition to yielding a

stronger result, information theory also allows a shorter proof.12

12Theorem 1 is also closely related to Lemma 3 of Sugaya and Wolitzky (2021), which is a general result
on the maximum average “influence”of N binary random variables on a signal with channel capacity C.
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Proof. For any a ∈ A, i ∈ I, and a′i ∈ Ai, we have

∑
y

(p (y|a)− p (y|a′i, a−i))+

=
∑
y

(∑
xi

(
πai,xi − πa′i,xi

)
Pr (y|xi)

)
+

=
∑
y

(∑
xi

(
πai,xi − πa′i,xi

)
(Pr (y|xi)− Pr (y))

)
+

≤
∑
y

∑
xi

(
πai,xi − πa′i,xi

)
+

(Pr (y|xi)− Pr (y))+ +
∑
y

∑
xi

(
πai,xi − πa′i,xi

)
− (Pr (y|xi)− Pr (y))−

=
∑
xi

(
πai,xi − πa′i,xi

)
+

∑
y

(Pr (y|xi)− Pr (y))+ +
∑
xi

(
πai,xi − πa′i,xi

)
−

∑
y

(Pr (y|xi)− Pr (y))−

≤
∑
xi

(
πai,xi − πa′i,xi

)
+

max
x′i

∑
y

(Pr (y|x′i)− Pr (y))+

+
∑
xi

(
πai,xi − πa′i,xi

)
−min

x′i

∑
y

(Pr (y|x′i)− Pr (y))−

≤ (1− 2π)

(
max
x′i

∑
y

(Pr (y|x′i)− Pr (y))+ −min
x′i

∑
y

(Pr (y|x′i)− Pr (y))−

)
.

Next, for any x′i ∈ Xi, we have

∑
y

(Pr (y|x′i)− Pr (y))+ ≤

√√√√1

2

∑
y

Pr (y|x′i) log

(
Pr (y|x′i)

Pr (y)

)

=

√√√√ 1

2 Pr (x′i)

∑
y

Pr (x′i, y) log

(
Pr (x′i, y)

Pr (x′i) Pr (y)

)

≤

√√√√ 1

2π

∑
y,xi

Pr (xi, y) log

(
Pr (xi, y)

Pr (xi) Pr (y)

)
=

√
Ia (xi; y)

2π
,

where the first inequality is by Pinsker (CT, Lemma 11.6.1); the second inequality holds

because, for each xi, Pr (xi) ≥ π and

∑
y

Pr (xi, y) log

(
Pr (xi, y)

Pr (xi) Pr (y)

)
=

1

Pr (xi)

∑
y

Pr (y|xi) log

(
Pr (y|xi)

Pr (y)

)
≥ 0,
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by the information inequality (CT, Theorem 2.6.3); and the last equality is by the definition

of mutual information (here Ia (·, ·) denotes mutual information when action profile a is
played). Similarly, −

∑
y (Pr (y|x′i)− Pr (y))− ≤

√
Ia (xi; y) /2π.

Now, for any correlated equilibrium α and accompanying contract w, and for every player

i and manipulation si, we have

gi (si, α) ≤
∑
a,y

α (a) (p (y|a)− p (y|a′i, a−i))wi (a, y)

≤
∑
a

α (a)
∑
y

(p (y|a)− p (y|a′i, a−i))+ w̄ ≤ (1− 2π)

√
2w̄2Ia (xi; y)

π
.

Hence,

1

N

∑
i

ḡi (α) ≤ 1

N

∑
i

(1− 2π)

√
2w̄2Ia (xi; y)

π

≤ (1− 2π)

√
2w̄2

∑
i I
a (xi; y)

πN

= (1− 2π)

√
2w̄2Ia (x; y)

πN
≤ (1− 2π)

√
2w̄2C

πN
,

where the second inequality is by Jensen; the equality is by the chain rule for mutual infor-

mation (CT, Theorem 2.5.2), because (xi) are independent conditional on a; and the second

inequality is by the definition of channel capacity, because the distribution of x given a lies

in ϑ .

Without individual-level noise, detectability cannot be bounded in terms of channel ca-

pacity, and Theorem 1 fails. For example, suppose that the stage game is an N -player

prisoner’s dilemma with a binary public signal y, where y = 0 if every player cooperates,

and y = 1 if any player defects. Mutual cooperation is then a correlated equilibrium for a

fixed value of w̄, independent of N : if wi (0) = w̄ and wi (1) = 0 for all i, then each player’s

incentive is the same as in a single agent problem. However, in this example the channel

capacity of (Y, q) is only log 2 (i.e., one bit). Thus, without individual noise, a monitoring

structure can support strong incentives even if it not very “informative”in terms of channel

capacity. In contrast, Theorem 1 shows that with individual noise, only informative signals

can support strong incentives.
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Our next result is that Theorem 1 is tight up to a factor of
√
π/2. Thus, for any

fixed noise level, the relationship between team size, information, and the maximum reward

captured by Theorem 1 is tight up to a constant factor.

Theorem 2 For any N , C ∈ (0, (log 2)N ], w̄, and π ∈ (0, 1/2), there exists a π-bounded

game and a correlated equilibrium that is not ε-myopic, for

ε = (1− 2π)

√
w̄2C

N
.

Proof. Let q be the smaller solution to

C

N
= q log (2q) + (1− q) log (2 (1− q)) .

Note that, since C/N ∈ (0, log 2], we have q ∈ [0, 1/2).

Consider an N -player prisoner’s dilemma, where Ai = Xi = Yi = {c, d}; πai,xi = 1− π if
ai = xi and π otherwise; and q (y|x) =

∏
i qi, where qi = 1 − q if yi = xi, qi = q otherwise.

Suppose that each player gains g by taking d rather than c, regardless of the opponents’

actions.

Note that this monitoring structure does have channel capacity C. This follows be-

cause the mutual information is maximized when the xi’s are independent Bernoulli (1/2)

variables, which gives C = N (q log (2q) + (1− q) log (2 (1− q))), as desired.
Now consider the action distribution where everyone takes c with probability 1, together

with the contract wi (a, y) = 1{yi=c}w̄. This is a correlated equilibrium iff

g ≤ (1− 2π) (1− 2q) w̄.

Thus, if g is such that this expression holds with equality, we have a correlated equilibrium

that is not ε-myopic, for any ε < (1− 2π) (1− 2q) w̄. It thus suffi ces to show that 1− 2q >√
C/N , or equivalently

1− 2q >
√
q log (2q) + (1− q) log (2 (1− q)).

But it is straightforward to verify that this inequality holds for all q ∈ [0, 1/2).

13



Our third result concerns a restricted class of equilibria, which model collective incentive

provision, as in price wars a la Green and Porter (1984), or Hume’s threat of “the abandoning

of the whole project.”We say that a public equilibrium is linear if the reward vectors lie on

a line: for each player i 6= 1, there exists a constant bi ∈ R such that, for all signals y, y′, we
have wi (y′)− wi (y) = bi (w1 (y′)− w1 (y)). For any c > 0, we say that a linear equilibrium

has c-bounded expected rewards if E [w1 (y)] ≤ c.

Cooperation in an arbitrary linear equilibrium is possible under conditions similar to

those in Theorem 1 and 2. In contrast, cooperation in a linear equilibrium with bounded

expected rewards is possible only if the maximum reward is extremely large relative to

the population size. Later on, we will see that this near-impossibility result caries over to

repeated games, where boundedness arises endogenously as an implication of self generation

and promise keeping.

Theorem 3 Fix any π > 0, and c > 0.

For any ε > 0, there exists k > 0 such that, in any π-bounded game where

N

w̄2
> k,

all linear equilibria are ε-myopic.

Moreover, for any ε > 0 and ρ > 0, there exists k > 0 such that, in any π-bounded game

where
exp (N1−ρ)

w̄
> k,

all linear equilibria with c-bounded expected rewards are ε-myopic.

Theorem 3 differs from Theorem 1 in the required relationship between N and w̄ (under

bounded expected rewards), and also in that Theorem 3 does not depend on C. Intuitively,

the optimal linear equilibria take a bang-bang form even when the realized outcome profile

is perfectly observed, so a binary signal that indicates whether or not the maximum reward

should be delivered is as effective as any more informative signal. Thus, Theorem 3 cannot

be refined by incorporating C.

The proof of Theorem 3 is deferred to the appendix. To see the idea, suppose the game is

symmetric and that Y = X = A with binary actions and symmetric noise, so that |Ai| = 2,

πai,ai = 1 − π and πai,a′i = π for all ai 6= a′i, and q (y|x) = 1 {y = x}. Suppose we wish to

14



enforce a symmetric pure action profile ~a0 = (a0, . . . , a0), where ḡi (~a0) = ν. By standard

arguments, an optimal linear equilibrium takes the form of a “tail test,”where wi (y) = w̄

for all i if the number n of players for whom yi = a0 exceeds a threshold n∗, and otherwise

wi (y) = 0 for all i.13 Due to individual-level noise, when N is large the distribution of n is

approximately normal, with mean (1− π)N and standard deviation
√
π (1− π)N . Denote

the threshold z-score of a tail test with threshold n∗ by z∗ = (n∗ − (1− π)N) /
√
π (1− π)N ,

and let φ and Φ denote the standard normal pdf and cdf. Incentive compatibility then gives

φ (z∗) w̄√
π (1− π)N

≥ ν. (2)

This condition fails for any z∗ when N/w̄2 is suffi ciently large, which delivers the first part

of the theorem. Now, if we also require that expected rewards are c-bounded, then

(1− Φ (z∗)) w̄ ≤ c. (3)

Yet, the combination of (2) and (3) is extremely restrictive when N is large. Indeed, dividing

(2) by (3), we obtain
φ (z∗)

1− Φ (z∗)
≥ ν

c

√
π (1− π)N.

The left-hand side of this inequality is the standard normal Mills ratio, which is approxi-

mately equal to z∗ when z∗ � 0. Hence, z∗ must increase at least linearly with
√
N . But

since φ (z∗) decreases exponentially with z∗, and hence exponentially with N , the second

part of the theorem now follows from (2).14

4 Repeated Games with Many Players

We now turn to repeated games with individual-level noise and imperfect monitoring.

13The analysis of tail tests as optimal incentive contracts under normal noise goes back to Mirrlees (1975).
The logic of Theorem 3 shows that the size of the penalty in a Mirrleesian tail test must increase exponentially
with the variance of the noise. We are not aware of a reference to this point in the literature.
14Conversely, if πiai,ai is suffi ciently large for all i and ai, and exp

(
N1+ρ

)
/w̄ → 0 for some ρ > 0, then

any action profile a can be supported with bounded expected rewards by a tail test where wi (y) = w̄ only
if yi = ai for every player i.
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4.1 Model

We consider stage games as in the previous sections, but replace contracts with equilibrium

continuation play. Formally, a repeated game with individual-level noise Γ = (I, A, u,X, π, Y, q, δ)

is described by a stage game (I, A, u), a noise structure (X, π), an outcome monitoring struc-

ture (Y, q), and a discount factor δ ∈ [0, 1). In each period t = 1, 2, . . ., (i) the players observe

the outcome of a public randomizing device zt drawn from the uniform distribution over [0, 1],

(ii) the players take actions a, (iii) the outcome x is drawn according to πa,x, and (iv) the

signal y is drawn according to q (y|x) and is publicly observed.15 A history hti for player i

at the beginning of period t thus takes the form hti =
(
(zt′ , ai,t′ , yt′)

t−1
t′=1 , zt

)
. A strategy σi

for player i maps histories hti to distributions over actions ai,t. A strategy σi is public if it

depends on hti only through the public history h
t =

(
(zt′ , yt′)

t−1
t′=1 , zt

)
. A Nash equilibrium is

a strategy profile where each player’s strategy maximizes her discounted expected payoff. A

perfect public equilibrium (PPE) is a profile of public strategies that, beginning at any period

t and any public history ht, forms a Nash equilibrium from that period on.16 The set of PPE

payoffvectors is denoted by E ⊆ RN . A repeated game outcome µ ∈ ∆ ((A×X × Y )∞) (not

to be confused with a single profile of individual outcomes x) is a distribution over infinite

paths of actions, individual outcomes, and signals. Each strategy profile σ induces a unique

outcome µ. In turn, each outcome µ defines a marginal distribution over period t actions

αµt ∈ ∆ (A), as well as an occupation measure over action profiles, defined as

αµ = (1− δ)
∞∑
t=1

δt−1αµt .

Intuitively, the occupation measure captures how the game is played “on average.”Note that

the players’payoffs are determined by the occupation measure, as

(1− δ)
∑
t

δt−1
∑
a

αµt (a)u (a) =
∑
a

(1− δ)
∑
t

δt−1αµt (a)u (a) =
∑
a

αµ (a)u (a) = u (αµ) .

15Since we will assume that players do not observe their own payoffs in addition to their signals, it is
natural to require that players’realized payoffs are determined by their signals, and hence depend on a only
through x. However, this assumption is not necessary for our analysis. In addition, our results are unchanged
if each player i also observes her own individual outcome xi. We discuss generalizations to privately observed
signals yi below.
16As usual, this definition allows players to consider deviations to arbitrary, non-public strategies; however,

such deviations are irrelevant because, whenever a player’s opponents use public strategies, she has a public
strategy as a best response.
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4.2 Conditions for Non-Cooperation in Repeated Games

The analogue of Theorem 1 for repeated games is as follows.

Theorem 4 Any Nash equilibrium occupation measure in a (ū, π̄)-bounded repeated game is

ε-myopic (and hence any Nash equilibrium payoff vector is ε-myopic), for

ε =
2ū

π

√
δ

1− δ
C

N
.

In particular, for any fixed noise level π, if the per-capita channel capacity C/N is much

smaller than the discount rate 1− δ, then equilibrium play (i.e., the equilibrium occupation

measure) is almost myopic. This result is analogous to Theorem 1 with a maximum reward

of w̄ = (1− δ)−1/2. This may be somewhat counterintuitive, as continuation payoffs in

a repeated game are weighted by (1− δ)−1, not (1− δ)−1/2. However, under imperfect

monitoring it is impossible that each period is solely responsible for determining continuation

play, so an average incentive strength of (1− δ)−1 cannot be attained. This last point is

formalized by Theorem 1 of SW, on which Theorem 4 relies.

Proof. For any player i, manipulation si, and action profile distribution α, define

χ2
i (si, α) =

∑
a,y

α (a) p (y|a)

(
p (y|a)− p (y|si (ai) , a−i)

p (y|a)

)2

.

(When α (a) = 1 for some action profile a, this is the χ2-divergence of the manipulated signal

distribution p (·|si (ai) , a−i) from the prescribed distribution p (·|a).) By Theorem 1 of SW,

for any Nash equilibrium outcome µ, any player i, and any manipulation si, we have

gi (si, α
µ) ≤ ū

√
δ

1− δχ
2
i (si, αµ).

Hence, by Jensen,
1

N

∑
i

gi (si, α
µ) ≤ ū

√
δ

1− δ
1

N

∑
i

χ2
i (si, αµ).

The proof is now completed by an application of the following lemma.

Lemma 1 For any profile of manipulations (si) and any action profile distribution α, we
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have ∑
i

χ2
i (si, α) ≤ 4C

π2
.

The proof is a simple application of the Cauchy-Schwarz and Pinsker inequalities and the

chain rule for mutual information, and is deferred to the appendix.

When N is large, the necessary condition for cooperation implied by Theorem 4– that

(1− δ)N/C is not too large– is easier to satisfy in some classes of repeated games than in

others. For example, if the space of possible signal realizations Y is fixed independently of

N , then, since C ≤ log |Y |, the necessary condition implies that δ must converge to 1 at

least as fast as N → ∞, which is a restrictive condition. This negative conclusion applies
for traditional applications of repeated games with public monitoring where the signal space

is fixed independent of N , such as when the public signal is the market price facing Cournot

competitors, the level of pollution in a common water source, the output of team production,

or some other aggregate statistic.

However, in other settings C scales linearly withN , so that (1− δ)N/C is small whenever
players are patient (regardless of the population size). In repeated games with random

matching (Kandori, 1992; Ellison, 1994; Deb, Sugaya, and Wolitzky, 2020), players match

in pairs each period and yit = am(i,t),t, where m (i, t) ∈ I\ {i} denotes player i’s period-t
partner. In these games, C = N log |Ai|, so per-capita channel capacity is independent of
N . Intuitively, in random matching games each player gets a distinct signal of the overall

action profile, so the total amount of information available to society is proportional to the

population size. Channel capacity also scales linearly with N in public-monitoring games

where the public signal is a vector that includes a distinct signal of each player’s action,

as in the ratings systems used by websites like eBay and AirBnB. In general, C/N may be

constant in settings where players are monitored “separately,”rather than being monitored

jointly through an aggregate statistic.

Remark 1 In applications like Cournot competition, pollution, or team production, the sig-

nal space may be modeled as a continuum, in which case the constraint C ≤ log |Y | is
vacuous. However, our results extend to the case where Y is a compact metric space and

there exists another compact metric space Z and a function fN : XN → Z (which can vary

with N) such that the signal distribution admits a conditional density of the form qY |Z (y|z),

where Y , Z, and qY |Z are fixed independent of N . (For example, in Cournot competition
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z is industry output and y is the market price, which depends on z and a noise term with

variance fixed independent of N .) In this case,

C = max
ξ∈ϑ

∫
y∈Ȳ

∑
x∈X

ξ (x) qY |Z
(
y|fN (x)

)
log

(
qY |Z

(
y|fN (x)

)∑
x′∈X ξ (x′) qY |Z (y|fN (x′))

)
,

which is bounded by

C̄ = max
qZ∈∆(Z)

∫
y∈Ȳ

∫
z∈Z

qZ (z) qY |Z (y|z) log

(
qY |Z (y|z)∫

z′∈Z qZ (z′) qY |Z (y|z′)

)
.

Since C̄ is independent of N , it follows that C is bounded independent of N .

Remark 2 Prior results by FLP, A-NS, and Pai, Roth, and Ullman (2014) establish anti-

folk theorems as N →∞ for fixed δ. If we let N and δ vary together, the arguments in these

papers could be used to show that cooperation is impossible if (1− δ)2N →∞.17 In contrast,
Theorem 4 implies the stronger result that cooperation is impossible if (1− δ)N →∞. The
improvement comes from applying Theorem 1 of SW. Moreover, Theorem 5 will imply that

the relationship between 1− δ and N in Theorem 4 is tight up to log terms.

Remark 3 Theorem 4 can easily be generalized to allow private monitoring or correlation by

a mediator. Indeed, the same result applies for the blind game where the signal y is observed

only by a mediator, who privately recommends actions to the players.18

4.3 Cooperation under Random Monitoring

We now give a partial converse to Theorem 4. The result we state here– Theorem 5–

implies that the relationship among N , δ, and C in Theorem 4 is tight up to a log (N) term.

However, Theorem 5 assumes “random monitoring,”a particular monitoring structure. In

Appendix D, we establish a much more general folk theorem (Theorem 7) that allows N , δ,

and monitoring to vary simultaneously, and which implies Theorem 5 as a corollary.

We require some additional terminology. A monitoring structure (Y, q) has a product

structure if there exist sets (Yi)i∈I and a family of conditional distributions (qi (yi|xi))i,,yii,xi
17The same result obtains by applying Theorem 1 directly to a repeated game, since continuation payoffs

are weighted by (1− δ)−1.
18See SW for more on the blind game.
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such that Y =
∏

i Yi and q (y|x) =
∏

i qi (yi|xi) for all y, x. That is, the public signal y
consists of conditionally independent signals of each player’s individual outcome. Note that

if (Y, q) has a product structure, then so does (Y, p), meaning that there exists a family

of conditional distributions (pi (yi|ai))i,,yii,ai (given by pi (yi|ai) =
∑

xi
πiai,xiqi (yi|xi)) such

that p (y|a) =
∏

i pi (yi|ai) for all y, a. A particular product monitoring structure is random
monitoring. Under random monitoring, at the end of every period a certain number M

of players are selected uniformly at random, and the public signal perfectly reveals their

identities and their realized individual outcomes. That is, under random monitoring of M

players, Yi = Xi ∪ {∅} for all i, and

qi (yi|xi) =


M
N

if yi = xi,

0 if yi ∈ Xi\ {xi} ,
1− M

N
if yi = ∅.

Note that the channel capacity of random monitoring is no more than M log (maxi |Xi|).
We require that individual-level noise is not too extreme. Specifically, define the maxi-

mum detectability of a noise structure (X, π) as

∆ = sup

∆̃ :
∑

xi:πai,xi≥∆̃

πai,xi

(
πai,xi − πa′i,xi

πai,xi

)2

≥ ∆̃ for all i ∈ I, ai 6= a′i ∈ Ai

 .

This quantity is equal to the maximum detectability maxi,si,α χ
2
i (si, α) (as defined in the

proof of Theorem 4) of the action monitoring structure (Y, p) induced by the noise structure

(X, π) together with perfect monitoring of outcomes (i.e., q (y|x) = 1 {y = x}), when we
ignore outcomes that occur with probability less than ∆. For example, with noisy actions

(i.e., X = A), maximum detectability satisfies

∆ > min
i,ai 6=a′i

πai,ai − 2πa′i,ai ,

and is thus close to 1 when the “tremble probability”1−πai,ai is close to 0 for all i and ai.19

Finally, denote the feasible payoff set by F = co
{
{u (a)}a∈A

}
⊆ RN (where co denotes

convex hull). Let F ∗ ⊆ F denote the set of payoff vectors that weakly Pareto-dominate a

19This follows because
∑
xi:πai,xi≥πai,ai−2πa′

i
,ai

πai,xi

(πai,xi−πa′i,xi
πai,xi

)2

≥
(
πai,ai−πa′i,ai

)2
πai,ai

≥ πai,ai − 2πa′i,ai .
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payoff vector which is a convex combination of static Nash payoffs: that is, v ∈ F ∗ if v ∈ F
and there exists a collection of static Nash equilibria (αn) and non-negative weights (βn)

such that v ≥
∑

n βnu (αn) and
∑

n βn = 1. For each v ∈ RN and ε > 0, let Bv (ε) =∏
i [vi − ε, vi + ε] and let B (ε) =

{
v ∈ RN : Bv (ε) ⊆ F ∗

}
. That is, B (ε) is the set of payoff

vectors v ∈ RN such that the cube with center v and side-length 2ε lies entirely within F ∗.

For example, in Appendix C we consider a canonical public-goods game where each player

chooses Contribute or Don’t Contribute, and a player’s payoff is the fraction of players who

contribute less a constant c ∈ (0, 1) (independent of N) if she contributes herself. In this

game, we show that for every v ∈ (0, 1− c) there exists ε > 0 such that the symmetric payoff

vector where all players receive payoff v lies in B (ε), for all N .

Our folk theorem for random monitoring is as follows.

Theorem 5 Fix any ū > 0 and ∆ > 0. For any ε > 0, there exists k > 0 such that, in any

ū-bounded repeated game with random monitoring of M ≤ N players and a noise structure

with maximum detectability ∆, where

(1− δ)N log (N)

M∆
< k,

we have B (ε) ⊆ E.

Theorem 5 implies that the relationship among N , δ, and C in Theorem 4 is tight up to

a log (N) term. To see this, note that in a (ū, π)-bounded game, random monitoring of M

players has a channel capacity of at most M log (1/π). Thus, under random monitoring of

M players with a noise structure with any fixed maximum detectability ∆ > 0, Theorem 4

implies that all Nash equilibrium payoff vectors are consistent with approximately myopic

play if (1− δ)N/M → ∞, while Theorem 5 implies that a perfect folk theorem holds if

(1− δ)N log (N) /M → 0.

In Appendix D, we generalize Theorem 5 from random monitoring to arbitrary product-

structure monitoring. This more general result (Theorem 7) is no harder to prove than

Theorem 5, but it is less tightly connected to Theorem 4 because it relies on statistical

conditions which are imposed directly on the action monitoring structure (Y, p). For this

reason, we defer Theorem 7 to the appendix.

Theorem 5 (as well as its generalized version, Theorem 7) is a folk theorem for PPE in
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repeated games with public monitoring.20 The standard proof approach, following FLM and

Kandori and Matsushima (1998), relies on transferring continuation payoffs among the play-

ers along hyperplanes that are tangent to the boundary of the PPE payoffset. Unfortunately,

this approach encounters diffi culties when N and δ vary simultaneously. The problem is that

when N is large, changing each player’s continuation payoff by a small amount can result in

a large overall movement in the continuation payoff vector. Mathematically, FLM’s proof re-

lies on the equivalence of the L1 norm and the Euclidean norm in RN . Since this equivalence

is not uniform in N , their proof does not apply when N and δ vary simultaneously.21

Our proof (which is sketched in Appendix E, with details deferred to the online appendix)

is instead based on the “block strategy” approach introduced by Matsushima (2004) and

Hörner and Olszewski (2006) in the context of repeated games with private monitoring. We

view the repeated game as a sequence of T -period blocks, where T is a number proportional

to 1/ (1− δ). At the beginning of each block, a target payoff vector is determined by public
randomization, and with high probability the players take actions throughout the block that

deliver the target payoff. Players accrue promised continuation payoff adjustments whenever

they are monitored, and the distribution of target payoffs in the next block is set to deliver

the promised adjustments. To provide incentives, the required payoff adjustment when a

player is monitored is of order N/M , the inverse of the monitoring probability. By the law

of large numbers, when T � N/M , with high probability the total adjustment that a given

player accrues over a T -period block is much smaller than T ∼ 1/ (1− δ), and is thus small
enough that it can be delivered by appropriately specifying the distribution of target payoffs

at the start of the next block.

The main diffi culty in the proof is caused by the low-probability event that a player

20Specifically, it is a “Nash threat”folk theorem, as F ∗ is the set of payoffs that Pareto-dominate a convex
combination of static Nash equilibria. To extend this result to a “minmax threat” theorem, players must
be made indifferent among all actions in the support of a mixed strategy that minmaxes an opponent. This
requires a stronger identifiability condition, similar to Kandori and Matsushima’s assumption (A1).
21With random monitoring of M players, the per-period movement in each player’s continuation payoff

required to provide incentives is of order (1− δ)N/M , so the movement of the continuation payoff vec-
tor in RN is O

(
(1− δ)N3/2/M

)
. For any ball B ⊆ F ∗, consider the problem of generating the point

v = argmaxw∈B w1 using continuation payoffs drawn from B. To satisfy promise keeping, player 1’s contin-
uation payoff must be within distance O (1− δ) of v, so the largest possible movement along a translated
tangent hyperplane is O

(√
1− δ

)
. FLM’s proof approach thus requires that (1− δ)N3/2/M �

√
1− δ, or

equivalently (1− δ)N3/M2 � 1, while we assume only (1− δ)N log (N) /M � 1. Hence, while the condi-
tions for Theorem 7 are tight up to log (N) slack, FLM’s approach would instead require slack N2/M ≥ N .
On the other hand, in SW, we extend FLM’s proof to give a folk theorem where discounting and monitoring
vary simultaneously for a fixed stage game. There, FLM’s approach works because N is fixed.
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accrues an unusually large total adjustment over a block, so that at some point there is no

room to provide additional incentives. In this case, the player can no longer be incentivized

to take a non-myopic best response, and all players’ behavior in the current block must

change. Hence, if any player’s payoff adjustment is “abnormal,”all players’payoffs in the

block may be far from the target equilibrium payoffs.

The proof ensures that rare payoff-adjustment abnormalities do not compromise either ex

ante effi ciency or the players’incentives. Effi ciency is preserved if the block-length T is large

enough that the probability that any player’s payoff adjustment is abnormal is small. Since

the per-period payoff adjustment for each player is O (N/M) and the length of a block is

O (1/ (1− δ)), standard concentration bounds imply that the probability that a given player’s
payoffadjustment is abnormal is exp (−O (M/ ((1− δ)N))). Hence, by the union bound, the

probability that any player’s adjustment is abnormal is at mostN exp (−O (M/ ((1− δ)N))),

which converges to 0 when (1− δ)N log (N) /M → 0. This step accounts for the log (N)

gap between Theorem 4 and 5.

Finally, since all players’payoffs are affected whenever any player’s payoff adjustment

becomes abnormal, incentives would be threatened if a player’s action influenced the prob-

ability that other players’adjustments become abnormal. We avoid this problem by letting

each player’s adjustment depend only on the public signals of her own actions. Such a sep-

aration of payoff adjustments across players is possible under product structure monitoring.

We do not know if Theorems 5 and 7 can be extended to non-product structure monitoring

without introducing qualitatively larger (i.e., polynomial) slack.

4.4 Non-Cooperation under Collective Sanctions

We now consider an arbitrary public monitoring structure. We say that a PPE is linear if all

continuation payoff vectors lie on a line: for each player i 6= 1, there exists a constant bi ∈ R
such that, for all public histories h, h′, we have wi (h′)−wi (h) = bi (w1 (h′)− w1 (h)), where

wi (h) denotes player i’s equilibrium continuation payoff at history h. Relabeling the players

if necessary, we can take |bi| ≤ 1 for all i without loss. Note that if bi ≥ 0 for all i then the

players’preferences over histories are all aligned; while if bi < 0 for some i then the players

can be divided into two groups with opposite preferences. This notion of linear equilibrium

generalizes strongly symmetric equilibrium (SSE) in symmetric games, where bi = 1 for all i.

Our result for linear PPE is as follows.
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Theorem 6 Fix any ū > 0 and π > 0. For any ε > 0 and ρ > 0, there exists k > 0 such

that, in any (ū, π)-bounded repeated game with public monitoring where

(1− δ) exp
(
N1−ρ) > k,

all linear PPE payoff vectors are ε-myopic.

Theorem 6 is analogous to the bounded-expected-reward case of Theorem 3. The main

difference is that, in the current result, bounded expected rewards arise endogenously as a

consequence of self generation and promise keeping.

Theorem 6 is related to Proposition 1 of Sannikov and Skrzypacz (2007), which is an

anti-folk theorem for SSE in a two-player repeated game where actions are observed with

additive, normally distributed noise, with variance proportional to (1− δ)−1.22 As a tail

test is optimal in their setting, the logic of Theorems 3 and 6 implies that incentives can be

provided only if (1− δ)−1 increases exponentially with the variance of the noise. Since in

their model (1− δ)−1 increases with variance only linearly, they likewise obtain an anti-folk

theorem. Similarly, Proposition 2 of Fudenberg and Levine (2007) is an anti-folk theorem in

a game with one patient player and a myopic opponent, where the patient player’s action is

observed with additive, normal noise, with variance proportional to (1− δ)−ρ for some ρ > 0;

and their Proposition 3 is a folk theorem when the variance is constant in δ. Theorems 3 and

6 suggest that their anti-folk theorem extends whenever variance asymptotically dominates(
log (1− δ)−1)1/(1−ρ)

for some ρ > 0, while their folk theorem extends whenever variance is

asymptotically dominated by
(
log (1− δ)−1)1/(1+ρ)

for some ρ > 0.

5 Discussion

5.1 How Large is V (ε)?

Recall that Theorem 4 gives conditions under which all equilibrium payoffs lie in the set

V (ε) =

{
v ∈ RN : v = u (α) for some α such that

1

N

∑
i

ḡi (α) ≤ ε

}
.

22Their interpretation is that the players change their actions every ∆ units of time, where δ = e−r∆

for fixed r > 0 and variance is inversely proportional to ∆, for example as a consequence of observing the
increments of a Brownian process.
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Payoffs in V (ε) are attained by action distributions where the per-player average deviation

gain is less than ε; however, a few players can have large deviation gains. A more stan-

dard notion of “ε-myopic play” is that all players’deviations gains are less than ε. The

corresponding payoff vectors are the static ε-correlated equilibrium payoffs, given by

CE (ε) =
{
v ∈ RN : v = u (α) for some α such that ḡi (α) ≤ ε for all i

}
.

We now compare the sets V (ε) and CE (ε). We first give an example where V (ε) and

CE (ε) are very different (and V (ε) cannot be replaced by CE (ε) in Theorem 4). We then

give a condition under which maximum per-capita utilitarian welfare
∑

i vi/N is “similar”in

V (ε) and CE (c
√
ε), for a constant c. Intuitively, V (ε) and CE (ε) can be very different if

incentive constraints bind for only a few players, and these players’actions have large effects

on others’payoffs; while maximum utilitarian welfare in V (ε) and CE (c
√
ε) are similar if

each player’s action has a small effect on every opponent’s payoff.

For an example where V (ε) and CE (ε) differ, consider a “product choice”game where

player 1 is a seller who chooses high or low quality (H or L), and the other N − 1 players

are buyers who choose whether to buy or not (B or D). If the seller takes a1 ∈ {H,L} and
a buyer i takes ai ∈ {B,D}, this buyer’s payoff is given by

1 {ai = B} (−1 + 2× 1 {a1 = H}) ,

while the seller’s payoff is given by

2k

N
− 1 {a1 = H} ,

where k ∈ {0, 1, . . . , N} is the number of buyers who take B. Suppose also that X = A and

πi = π ∈ (0, 1/3) for all i. Note that this game is (3, π)-bounded.

In this game, for any ε > 0, when N is suffi ciently large, we have (H,B, . . . , B) ∈ A (ε),

and hence (1, 1, . . . , 1) ∈ V (ε). This follows because the per-player average deviation gain

at action profile (H,B, . . . , B) equals 1/N : the seller has a deviation gain of 1, while each

buyer has a deviation gain of 0. Thus, Theorem 4 does not preclude (1, 1, . . . , 1) (or any

convex combination of (1, 1, . . . , 1) and (0, 0, . . . , 0)) as an equilibrium payoff vector, even

when (1− δ)N/C is very large. This is reassuring, because the monitoring structure given
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by perfect monitoring of the seller’s realized action (i.e., Y = {H,L}, q (y|x) = 1 {y = x1})
has channel capacity log 2 and supports the payoff vector(

1− 3π

1− 2π
,
1− 3π

1− 2π
, . . . ,

1− 3π

1− 2π

)
, for all δ >

1

2− 3π
and all N ≥ 2.23

In contrast, the greatest symmetric payoffvector in CE (ε) is (ε, ε, . . . , ε), because the seller’s

deviation gain equals the probability that she takes H.

Intuitively, even though the effi cient action profile (H,B, . . . , B) is not a static ε-correlated

equilibrium, it can be supported as a repeated game equilibrium with “not very informative”

monitoring. The reason is that only one player (the seller) is tempted to deviate at the effi -

cient action profile, so monitoring one player suffi ces to support this action profile regardless

of the population size (the number of buyers).

Next, for any d ∈ (0, ū), say that per-capita externalities are bounded by d if
∣∣ui (a′j, a−j)− ui (a)

∣∣ ≤
d/N for all i 6= j, a′j, a. For example, in a repeated random matching game, d can be taken

as the maximum impact of a player’s action on her partner’s payoff, which is independent

of N . In contrast, in the product choice game, per-capita externalities cannot be bounded

uniformly in N , because the seller exerts an externality of 2 on each buyer who purchases.

In games with bounded per-capita externalities, maximum per-capita utilitarian welfare

in V (ε) and CE
(√

8dε
)
are “similar.”

Proposition 1 Assume that per-capita externalities are bounded by d. Then, for any ε ∈
(0, d) and any v ∈ V (ε), there exists v′ ∈ CE

(√
8dε
)
such that

1

N

∣∣∣∣∣∑
i∈I

(vi − v′i)
∣∣∣∣∣ ≤

√
2ε

d
ū.

5.2 Conclusion

This paper has developed a theory of large-group cooperation based on moral hazard prob-

lems and repeated games with individual-level noise where the population size, discount

factor, stage game, and monitoring structure all vary together in a flexible manner. Our

23This is a standard calcuation, which results from considering “forgiving trigger strategies”that prescribe
Nash reversion with probability φ when y = L. The smallest value of φ that induces the seller to take H is
given by φ = (1− δ) / (δ − 3δπ), and substituting this into the value recursion v = (1− δ) (1) + δ (1− πφ) v
yields v = (1− 3π) / (1− 2π).
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main results establish necessary and suffi cient conditions for cooperation, which identify the

ratio of the discount rate and the per-capita channel capacity of the outcome monitoring

structure as a key statistic. For a class of monitoring structures, our necessary and suffi cient

conditions coincide up to log (N) slack. We also show that cooperation in a linear equilibrium

is possible only under much more stringent conditions. This last result demonstrates a sense

in which large-group cooperation must rely on personalized sanctions.

Our results raise several questions for future theoretical and applied research. On the

theory side, this paper has focused on insuffi cient monitoring precision as an obstacle to

large-group cooperation. In reality, insuffi cient precision coexists with other obstacles to

cooperation, such as monitoring being decentralized (as in community enforcement models)

and the possibility that some players may be irrational or fail to understand the equilibrium

being played (as in our earlier work, Sugaya and Wolitzky, 2020, 2021). Combining these

features may help develop a richer and more realistic perspective on the prospects for large-

group cooperation. We have also only scratched the surface of the implications of limited

monitoring precision for organizational design, for example the design of large hierarchies.

This seems like another promising direction for future work.

As for applied work, more systematic empirical or experimental evidence on the determi-

nants of cooperation in large-population repeated games would be valuable.24 In particular,

our results predict that, while either personalized or collective sanctions can work in small

groups, personalized sanctions are much more effective in large groups. It would be interest-

ing to test this prediction.

24Camera and Casari (2009) and Duffy and Ochs (2009), among others, run experiments on repeated
games with random matching and private monitoring, i.e., community enforcement. As explained in the
introduction, community enforcement raises additional issues beyond the ones we focus on, which arise even
under public monitoring. Camera, Casari, and Bigoni (2013) include a treatment with public monitoring
(without individual-level noise), where they find that larger groups cooperate less.

27



Appendix

A Proof of Theorem 3

Fix a linear equilibrium α with coeffi cients (b1, b2, . . . , bN), where (without loss) |bi| ≤ 1 for

all i. Let w (y) = w1 (y). For any player i with bi ≥ 0 and any manipulation si, we have

gi (si, α) ≤
∑
r

α (r)
(
Er [biw (y)]− E(si(ri),r−i) [biw (y)]

)
≤

∑
r

α (r) max
ai∈Ai

(
Er [w (y)]− E(ai,r−i) [w (y)]

)
.

Since a symmetric inequality holds for players with bi < 0 and w (y) ∈ [0, w̄] for all y,

we see that
∑

i ḡi (α) /N is bounded by the solution to the following program, which is

parameterized by N and w̄:

max
(Y,p),r,a,w

2

N

∑
i

(
Er [w (y)]− E(ai,r−i) [w (y)]

)
s.t.

w (y) ∈ [0, w̄] for all y.

To prove the first statement in the theorem, it suffi ces to show that the value of this program

converges to 0 along any sequence (N, w̄) where N/w̄2 →∞.
Since πiai,xi ≥ π for all i, the solution to this program involves taking Y = X = A,

q (y|x) = 1 {y = x} for all y, x, ri 6= ai for all i, πiri,ri = 1− π, πiai,ri = π, and

w (y) =

 w̄ if {i : yi = ri} ≥ n∗,

0 if {i : yi = ri} < n∗,

for some n∗ ∈ {0, 1, . . . , N}.25 The value of the program is then

max
n∗∈{0,1,...,N}

2w̄ (1− 2π)

(
N − 1

n∗ − 1

)
(1− π)n

∗−1 πN−n
∗
.

That is, the value equals w̄ (1− 2π) times the maximum of the Binomial (N, π) probability

mass function. The first statement in the theorem follows as the latter quantity is propor-

25A proof is contained in an earlier version of the paper, available on request.
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tional to N−(1/2), by the De Moivre-Laplace theorem.

For the second statement, we impose the additional constraint that E [w (y)] ≤ c. The

solution takes the same form as above, except that now we have

w (y) =


w̄ if {i : yi = ri} > n∗,

βw̄ if {i : yi = ri} = n∗,

0 if {i : yi = ri} < n∗,

for some n∗ ∈ {0, 1, . . . , N} and β ∈ [0, 1], as it may be optimal to randomize the reward

at the cutoff to satisfy E [w (y)] ≤ c with equality. Letting n = |{i : yi = ri}| and n−i =

|{j 6= i : yj = rj}|, the program becomes

max
n∗∈{0,1,...,N},β∈[0,1]

2w̄ (1− 2π) (β Pr (n−i = n∗ − 1|r−i) + (1− β) Pr (n−i = n∗|r−i)) (4)

s.t. β Pr (n = n∗|r) + Pr (n ≥ n∗ + 1|r) ≤ c

w̄
, (5)

where

Pr (n−i = n∗|r−i) =

(
N − 1

n∗

)
πn
∗

(1− π)N−1−n∗ and Pr (n = n∗|r) =

(
N

n∗

)
πn
∗

(1− π)N−n
∗
.

Now fix ρ > 0 and a sequence, indexed by k, of pairs (N, w̄) satisfying exp (N1−ρ) /w̄ > k

and pairs (n∗, β) satisfying (5). Fix ε > 0, and suppose toward a contradiction that, for

every k̄, there is some k ≥ k̄ such that the value of (4) exceeds ε. Taking a subsequence and

relabeling k̄ if necessary, this implies that there exists k̄ such that, for every k ≥ k̄, the value

of (4) exceeds ε.

We consider two cases and derive a contradiction in each of them.

First, suppose that there exists d > 0 such that, for every k̃, there is some k ≥ k̃ satisfying

|π − (n∗ − 1) / (N − 1)| > d. By Hoeffding’s inequality (Boucheron, Lugosi, and Massart,

2013, Theorem 2.8),

Pr (n−i ≥ n∗ − 1|r−i) ≤ exp

(
−2

(
π − n∗ − 1

N − 1

)2

(N − 1)

)
.
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Hence, for every k̃, there is some k ≥ k̃ such that the value of (4) is at most

2w̄ (1− 2π) exp

(
−2

(
π − n∗ − 1

N − 1

)2

(N − 1)

)
≤ 2w̄ (1− 2π) exp

(
−2d2 (N − 1)

)
.

Since exp (N1−ρ) /w̄ →∞, we have w̄ exp (−2d2 (N − 1))→ 0 for all d > 0, and hence (4) is

less than ε for suffi ciently large k, a contradiction.

Second, suppose that for any d > 0, there exists k̃ such that, for every k ≥ k̃, we have∣∣∣∣π − n∗ − 1

N − 1

∣∣∣∣ ≤ d. (6)

For this case, we rely on the following lemma.

Lemma 2 For any m ∈ N and any γ > 0, there exists k̃ such that, for every k ≥ k̃, we have

β Pr (n = n∗|r) + Pr (n ≥ n∗ + 1|r)
β Pr (n−i = n∗ − 1|r−i) + (1− β) Pr (n−i = n∗|r−i)

≥ m (1− γ) . (7)

Proof. Fix d > 0 and take k suffi ciently large that (6) holds. For any m ∈ N, we have

Pr (n ≥ n∗ + 1|r)
Pr (n−i = n∗|r−i)

=
N∑

n=n∗+1

N (1− π)

N − n∗
(N − n∗)!n∗!
(N − n)!n!

(
π

1− π

)n−n∗

≥
N∑

n=n∗+1

N (1− d)

N − 1

(
N − n∗
n

)n−n∗ (
n∗ − 1− d (N − 1)

N − n∗ + d (N − 1)

)n−n∗

≥
n∗+m∑
n=n∗+1

(1− d)

(
N − n∗
n∗ +m

× n∗ − 1− d (N − 1)

N − n∗ + d (N − 1)

)m
= m (1− d)

(
N − n∗
n∗ +m

× n∗ − 1− d (N − 1)

N − n∗ + d (N − 1)

)m
.

By (6), for any γ′ > 0, for suffi ciently large k we have (n∗ − 1) / (n∗ +m) ≥ 1−γ′, and hence

N − n∗
n∗ +m

× n∗ − 1− d (N − 1)

N − n∗ + d (N − 1)
≥ (1− γ′) N − n

∗

n∗ − 1
× n∗ − 1− d (N − 1)

N − n∗ + d (N − 1)

= (1− γ′)
1− d N−1

n∗−1

1 + d N−1
N−n∗

≥ (1− γ′)
1− d

π−d

1 + d
1−π−d

=
(1− γ′) (π − 2d) (1− π − d)

(π − d) (1− π)
,
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which converges to 1 − γ′ as d → 0. Hence, for any γ > 0, there exists k̃ suffi ciently large

such that, for every k ≥ k̃,

Pr (n ≥ n∗ + 1|r)
Pr (n−i = n∗|r−i)

≥ m (1− d)

(
(1− γ′) (π − 2d) (1− π − d)

(π − d) (1− π)

)m
≥ m (1− γ) .

We therefore have

β Pr (n = n∗|r) + Pr (n ≥ n∗ + 1|r)
Pr (n−i = n∗|r−i)

≥ Pr (n ≥ n∗ + 1|r)
Pr (n−i = n∗|r−i)

≥ m (1− γ) .

Similarly, for any m and γ > 0, there exists k̃ such that, for every k ≥ k̃, we have

β Pr (n = n∗|r) + Pr (n ≥ n∗ + 1|r)
Pr (n−i = n∗ − 1|r−i)

≥ m (1− γ) .

Together, these inequalities imply that, for any m and γ > 0, there exists k̃ such that, for

every k ≥ k̃, (7) holds.

Thus, for any m ∈ N and any γ > 0, there exists k̃ such that, for every k ≥ k̃, the value

of (4) satisfies

2w̄ (1− 2π) (β Pr (n−i = n∗ − 1|r−i) + (1− β) Pr (n−i = n∗|r−i))

≤ 2c (1− 2π)
β Pr (n−i = n∗ − 1|r−i) + (1− β) Pr (n−i = n∗|r−i)

β Pr (n = n∗|r) + Pr (n ≥ n∗ + 1|r) (by (5))

≤ 2c (1− 2π)

m (1− γ)
(by (7)).

Taking m and γ such that 2c (1− 2π) / (m (1− γ)) < ε gives the desired contradiction.

B Proof of Lemma 1

We establish an intermediate lemma.

Lemma 3 For any player i, any manipulation si, and any action profile a, we have

χ2
i (si, a) ≤ 4Ia (xi; y)

π2
,

where Ia (·; ·) denotes mutual information when action profile a is played.
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Proof. Let Pr denote the probability distribution over (X, Y ) when a is played. For any

xi ∈ Xi and y ∈ Y , we have Pr (xi, y) = πai,xi Pr (y|xi) = p (y|a) Pr (xi|y). Hence, since

πai,xi ≥ π, we have

(Pr (y|xi)− p (y|a))2 =

(
p (y|a)

πai,xi
(Pr (xi|y)− πai,xi)

)2

≤
(
p (y|a)

π
(Pr (xi|y)− πai,xi)

)2

.

(8)

For any player i, manipulation si, and action profile a, we thus have

χ2
i (si, a) =

∑
y(∈Ȳ )

(p (y|a)− p (y|si (ai) , a−i))2

p (y|a)
=
∑
y

(∑
xi

(
πai,xi − πsi(ai),xi

)
Pr (y|xi)

)2

p (y|a)

=
∑
y

(∑
xi

(
πai,xi − πsi(ai),xi

)
(Pr (y|xi)− p (y|a))

)2

p (y|a)

≤
∑
xi

(
πai,xi − πsi(ai),xi

)2
∑
y

∑
xi

(Pr (y|xi)− p (y|a))2

p (y|a)

≤ 2

π2

∑
y

p (y|a)
∑
xi

(Pr (xi|y)− πai,xi)
2 ≤ 2

π2

∑
y

p (y|a)

(∑
xi

|Pr (xi|y)− πai,xi|
)2

≤ 4

π2

∑
y

p (y|a)
∑
xi

Pr (xi|y) log

(
Pr (xi|y)

πai,xi

)
=

4Ia (xi; y)

π2
,

where the first inequality follows by Cauchy-Schwarz, the second follows by (8) and∑
xi

(
πai,xi − πa′i,xi

)2 ≤ 2, the third is immediate, and the fourth follows by Pinsker.

We thus have

∑
i

χ2
i (si, a) ≤ 4

π2

∑
i

Ia (xi; y) =
4

π2
Ia (x; y) ≤ 4

π2
C,

where the equality follows by the chain rule for mutual information, and the second inequality

follows by the definition of channel capacity.

C The Set B (ε) in A Public-Goods Game

Consider the public-goods game where each player chooses Contribute or Don’t Contribute,

and a player’s payoff is the fraction of players who contribute less a constant c ∈ (0, 1)

(independent of N) if she contributes herself. Fix any v ∈ (0, 1− c), let v = (v, . . . , v) ∈ RN ,
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and let ε = cv (1− c− v) /4 > 0. We show that Bv (ε) ⊆ F for all N . Since no one

contributing is a Nash equilibrium with 0 payoffs, this implies that Bv (ε) ⊆ F ∗, and hence

v ∈ B (ε), for all N .

Fix any N . Since the game is symmetric, to show that Bv (ε) ⊆ F it suffi ces to show

that, for any number n ∈ {0, . . . , N}, there exists a feasible payoff vector where n “favored”
players receive payoffs no less than v + ε, and the remaining N − n “disfavored” players

receive payoffs no more than v− ε. First, consider the mixed action profile α1 where favored

players contribute with probability v+ε
1−c and disfavored players always contribute. At this

profile, favored players receive payoff f (n) := n
N
v+ε
1−c +

(
1− n

N

)
(1) − cv+ε

1−c , while disfavored

players receive payoff g (n) := n
N
v+ε
1−c +

(
1− n

N

)
(1) − c. Now consider the mixed action

profile α2 where favored players contribute with probability (v+ε)2

(1−c)f(n)
and disfavored players

contribute with probability v+ε
f(n)
. Note that each player’s payoff at profile α2 equals her

payoff at profile α1 multiplied by v+ε
f(n)
. Therefore, at profile α2, favored players receive payoff

f (n) v+ε
f(n)

= v + ε, while disfavored players receive payoff

g (n)
v + ε

f (n)
=

(
f (n)−

(
1− v + ε

1− c

)
c

)
v + ε

f (n)

≤ v + ε−
(

1− v + ε

1− c

)
c (v + ε) (since f (n) ≤ 1)

≤ v − ε (since ε = cv (1− c− v) /4).

D A More General Folk Theorem

For any η > 0, we say that an action monitoring structure (Y, p) satisfies η-individual iden-

tifiability if

∑
yi:pi(yi|ai)≥η2

pi (yi|ai)
(
pi (yi|ai)− pi (yi|αi)

pi (yi|ai)

)2

≥ η2 for all i ∈ I, ai ∈ Ai, αi ∈ ∆ (Ai\ {ai}) .

(9)

This condition is a variant of FLM’s individual full rank condition and Kandori and Mat-

sushima’s (1998) assumption (A2”). It says that the detectability of a deviation from ai to

any mixed action αi supported on Ai\ {ai} is at least η2, from the perspective of an observer

who ignores signals that occur with probability less than η2 under ai. Intuitively, this re-

quires that deviations from ai are detectable, and that in addition detection does not rest on
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very rare signal realizations. This assumption will ensure that players can be incentivized

through rewards whose variance and maximum absolute value are both of order (1− δ) /η2.26

Our general folk theorem is as follows.

Theorem 7 Fix any ū > 0. For any ε > 0, there exists k > 0 such that, for any ū-bounded

repeated game with product structure monitoring satisfying η-individual identifiability and

(1− δ) log (N)

η2
< k, (10)

we have B (ε) ⊆ E.

To prove Theorem 5 from Theorem 7, it suffi ces to show that random monitoring of M

players with a noise structure with ∆ detectability satisfies
√

∆M/N -individual identifiabil-

ity. To see this, note that, under random monitoring of M players, we have

pi (yi|ai) =

 M
N
πai,yi if yi ∈ Xi,

1− M
N

if yi = ∅.

We then have

∑
yi:pi(yi|ai)≥∆M/N

pi (yi|ai)
(
pi (yi|αi)− pi (yi|ai)

pi (yi|ai)

)2

=
M

N

∑
xi:πai,xi≥∆

πai,xi

(
πai,xi − πa′i,xi

πai,xi

)2

≥ ∆M

N
.

Hence, random monitoring of M players with a noise structure with ∆ detectability satisfies√
∆M/N -individual identifiability.

E Sketch of the Proof of Theorem 7

Fix any v ∈ B (ε). We show that, for suffi ciently large δ, the cube Bv (ε/2) is self-generating.

Since B (ε) is compact, this implies that, for suffi ciently large δ, B (ε) is self-generating, and

hence B (ε) ⊆ E.

26If (9) were weakened by taking the sum over all yi (rather than only yi such that pi (yi|ai) ≥ η2), player i
could be incentivized by rewards with variance O

(
(1− δ) /η2

)
, but not necessarily with maximum absolute

value O
(
(1− δ) /η2

)
. Our analysis requires controlling both the variance and absolute value of players’

rewards, so we need the stronger condition.
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Since Bv (ε/2) is a cube, for each extreme point v∗ ∈ Bv (ε/2), there exists ζ ∈ {−1, 1}N

such that v∗i ∈ argmaxw∈Bv(ε/2) ζ iwi for all i. To self-generate Bv (ε/2), it is suffi cient that,

for each ζ ∈ {−1, 1}N and v∗ satisfying v∗i ∈ argmaxw∈Bv(ε/2) ζ iwi for all i, we can find a

number T ∈ N, a T -period strategy σ, and a history-contingent continuation payoffw
(
hT+1

)
such that the following three conditions hold:

Promise Keeping v∗i = (1− δ)
∑T

t=1 δ
t−1Eσ [ui (at)] + δTEσ

[
wi
(
hT+1

)]
for all i.

Incentive Compatibility σ̃i = σi is optimal in the T -period repeated game with objective

Eσ̃i,σ−i
[
(1− δ)

∑T
t=1 δ

t−1ui (a) + δTwi
(
hT+1

)]
, for all i.

Self Generation w
(
hT+1

)
∈ Bv (ε/2) for all hT+1.

Since Bv (ε/2) is the cube with center v and side-length ε, and v∗i ∈ argmaxw∈Bv(ε/2) ζ iwi

for all i, we have w
(
hT+1

)
∈ Bv (ε/2) iff ζ i

(
wi
(
hT+1

)
− vi

)
∈ [−ε, 0] for all i. Thus, defining

ψi
(
hT+1

)
=
(
δT/ (1− δ)

) (
wi
(
hT+1

)
− v∗i

)
, we can rewrite the above conditions as

Promise Keeping vi = 1−δ
1−δT E

σ
[∑T

t=1 δ
t−1u (at) + ψi

(
hT+1

)]
for all i.

Incentive Compatibility σ̃i = σi is optimal in the T -period repeated game with objective

Eσ̃i,σ−i
[∑T

t=1 δ
t−1u (a) + ψi

(
hT+1

)
|σ′i, σ−i

]
, for all i.

Self Generation − δT

1−δε ≤ ζ iψi
(
hT+1

)
≤ 0 for all i, hT+1. Moreover, since limδ→1− δT

1−δε =

−∞, it suffi ces to require that ζ iψi
(
hT+1

)
≤ 0 for all i, hT+1.

Fix ζ and v∗, and take T = O
(
(1− δ)−1). We construct a T -period strategy σ and a

“reward function”ψi
(
hT+1

)
that satisfy the above conditions.

By (9), for each recommendation ri, there exists fi,ri (yi) such that (i) augmenting player

i’s utility by fi,ri (yi) incentivizes her to take ri, (ii) the expectation of fi,ri (yi) when

player i takes ri equals 0, and (iii) the variance of fi,ri (yi) is of order η2. Indeed, these

properties are achieved by taking fi,ri (yi) proportional to the likelihood ratio difference

minαi∈∆(Ai\{ai}) (pi (yi|ai)− pi (yi|αi)) /pi (yi|ai). (See Lemma 5.)
Since v ∈ B (ε) and v∗ ∈ Bv (ε/2), there exists ᾱ ∈ ∆ (A) such that ζ i (ui (ᾱ)− v∗i ) = ε/2.

Suppose that the recommendation profile r is drawn according to ᾱ by public randomization

(and players follow their recommendations), and define the reward function ψ̃i
(
hT+1

)
=∑

t δ
t−1fi,ri,t (yi,t)−ζ i 1−δT

1−δ
ε
2
. We call ψ̃i

(
hT+1

)
the “base reward.”We show that this strategy
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and reward function satisfy promise keeping and incentive compatibility, and also satisfy self

generation with high probability. We then show how to modify the strategy and reward

function to ensure that self generation is always satisfied.

Since fi,ri (yi) has 0 mean, promise keeping is immediate:

vi =
1− δ

1− δT
Eσ
[

T∑
t=1

δt−1ui (a) + ψ̃i
(
hT+1

)]
= ui (ᾱ)− ζ i

ε

2
= v∗i .

Next, incentive compatibility holds because

Eσ̃i,σ−i
[

T∑
t=1

δt−1ui (at) + ψ̃i
(
hT+1

)]
= Eσ̃i,σ−i

[
T∑
t=1

δt−1
(
ui (at) + fi,ri,t (yi,t)

)]
− 1− δT

1− δ ζ i
ε

2
,

so the augmented per-period payoff is ui (a)+fi,ri,t (yi,t). Moreover, since the variance of fi,ri

is O (η2) and T is O
(
(1− δ)−1), by a standard concentration inequality, the self generation

constraint ζ iψ̃i
(
hT+1

)
≤ 0 holds for all i with probability at least

N exp

(
−

1−δT
1−δ ζ i

ε
2√

Tη2

)
≈ exp

(
−

√
(1− δ) logN

η2

)
.

Therefore, by (10), self generation holds with high probability when k is small. (See Lemmas

6 and 8.)

We now modify the strategy and reward to satisfy self-generation at every history. To

this end, define a stopping time as the first period τ such that

ζ i

τ∑
t=1

δt−1fi,ri,t (yi,t) > f̄, (11)

where f̄ is a positive constant less than
((

1− δT
)
/ (1− δ)

)
ε/2. That is, in (the random)

period τ , for a player, the base reward ψ̃i
(
hT+1

)
becomes abnormal. If no such period arises,

define τ = T . By the same concentration argument as above, abnormality does not happen

to any player’s base reward (that is, τ = T ) with high probability: in particular,

Pr (τ < T ) ≈ exp

(
−

√
(1− δ) logN

η2

)
. (12)
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We now define the modified strategy.

If τ = T , then in every period r is drawn according to ᾱ and the reward equals ψ̃i
(
hT+1

)
.

If τ < T , then let I∗ be the set of players whose base reward satisfies (11). For each

i ∈ I∗, we add or subtract a constant from the rewards of players −i to satisfy self generation.
Since monitoring has a product structure, players −i cannot control the realization of player
i’s reward. Thus, this addition or subtraction does not affect incentives.

If I∗ is a singleton, I∗ = {i}, then player i starts taking a static best response. Meanwhile,
players −i take r−i drawn from ᾱ if ζ i = 1, and take static Nash actions

(
αNEj

)
j 6=i if

ζ i = −1. Let ui (ζ i) be player i’s resulting instantaneous payoff. Since v
∗ ∈ F ∗, we have

ζ i (ui (ζ i)− ui (ᾱ)) ≥ 0. Hence, if player i’s period t reward is fixed at ui (ᾱ) − ui (ζ i), self
generation is satisfied, and player i’s period t augmented payoff equals ui (ᾱ). If instead

|I∗| ≥ 2, then all players’subsequent rewards equal 0.

Since τ = T with high probability by (12), expected payoffs under the modified strategy

and reward are close to v. Further adjusting the rewards by a small constant thus achieves

promise keeping. Moreover, self generation now holds by construction. Finally, for any

period t > τ , incentive compatibility holds, because either a player’s reward is fixed and she

is supposed to take a static best response, or she is incentivized by the base reward function.

To complete the proof, it remains to establish incentive compatibility for periods t ≤ τ .

For t ≤ τ , player i’s augmented period t payoff is ui (ai, r−i) + fi,ri (yi)). Thus, to show that

it is optimal for player i to follow her recommendation, it suffi ces to show that she cannot

gain by manipulating the stopping time τ .

Since monitoring has a product structure, player i cannot influence others’ rewards.

Player i also cannot improve her augmented period t payoffby manipulating her own reward,

because both ui (r)+fi,ri,t (yi,t)) and ui (ζ i)+ui (ᾱ)−ui (ζ i)) equal u (ᾱ) regardless of whether

t ≤ τ or t > τ . However, there is one potential benefit from manipulation: once τ realizes

with I∗ = {i}, the chance of a constant being added or subtracted from player i’s reward

vanishes, but if τ first realizes with I∗ 6= {i}, this addition or subtraction occurs. To prevent
this adjustment from affecting player i’s incentive, a “fictitious”recommendation r̃t is drawn

according to ᾱ, and a fictitious signal ỹ is drawn according to p (ỹ|r̃), and the base rewards are
updated according to the fictitious recommendations and signals even when t > τ . (See (27)

for the definition of the fictitious recommendations and signals.) If player j 6= i’s fictitious

base reward satisfies (11), we add or subtract a constant from player i’s reward. (See (28)
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for the definition of the event that induces this addition or subtraction. Note also that

this fictitious update of player j’s base reward is used solely to satisfy player i’s incentives

and does not affect player j’s reward.) Given this modification, player i does not have an

incentive to manipulate her own reward to manipulate the distribution of τ (see Lemma 7),

and hence incentive compatibility holds (Lemma 9).

F Proof of Theorem 6

Fix a linear PPE with coeffi cients b = (1, b2, . . . , bN), where |bi| ≤ 1 for all i. Let I+ =

{i : bi ≥ 0} and I− = {i : bi < 0}. Define

vi =

 infhwi (h) if i ∈ I+,

suphwi (h) if i ∈ I−,
and v̄i =

 suphwi (h) if i ∈ I+,

infhwi (h) if i ∈ I−.

Since V (ε) is convex, it suffi ces to show that v, v̄ ∈ V (ε).

In the following lemma, given α ∈ ∆ (A) and a function ω : A × Y → R, Eα [ω (r, y)]

denotes expectation where r ∼ α and then y ∼ p (·|r), and Eα,a′i [ω (r, y)] denotes expectation

where r ∼ α and then y ∼ p (·|a′i, r−i).

Lemma 4 There exist α ∈ ∆ (A) and ω : A× Y→R such that

v̄ = Eα [u (r)− bω (r, y)] ,

Eα [ui (r)− biω (r, y) |ri = ai] ≥ Eα,a′i [ui (a
′
i, r−i)− biω (r, y) |ri = ai] for all i, ai ∈ suppαi, a

′
i ∈ Ai,

ω (r, y) ∈
[
0,

δ

1− δ ū
]

for all r, y.

Moreover, if the constraint ω (r, y) ∈
[
0, δ

1−δ ū
]
is replaced with ω (r, y) ∈

[
− δ

1−δ ū, 0
]
, then

the same statement holds with v in place of v̄.

Proof. Let E = {(1− β) v + βv̄ : β ∈ [0, 1]}. By standard arguments, E is self-generating:

for any v ∈ E, there exist α ∈ ∆ (A) and w : A× Y → E such that

v = Eα [u (r) + δw (r, y)] and

Eα [ui (r) + δwi (r, y) |ri = ai] ≥ Eα,a′i [ui (a
′
i, r−i) + δwi (r, y) |ri = ai] for all i, ai ∈ suppαi, a

′
i ∈ Ai.
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Since v ∈ E and w (r, y) ∈ E for all r, y, we have vi − wi (r, y) = bi (v1 − w1 (r, y)) for all

i, r, y. Since v̄1 ≥ v1 for all v ∈ E, if v = v̄ then w1 (r, y) ≤ v1 for all r, y. Hence, taking

v = v̄ = (1− δ)u (α)+δbE [w (r, y) |α] and defining ω (r, y) = δ
1−δ (v̄1 − w1 (r, y)) ∈

[
0, δ

1−δ ū
]

for all r, y, and letting E [·] denote expectation where y ∼ p (·|a), we have, for all a, r,

u (a)− bE [ω (r, y)] = u (a)− bE
[

δ

1− δ (v̄1 − w1 (r, y))

]
= u (a)− E

[
δ

1− δ (v̄ − w (r, y))

]
= (1− δ)u (a) + δE [w (r, y)] ,

and the result follows. Similarly, if v = v then w1 (r, y) ≥ v1 for all r, y, and the symmetric

conclusion holds.

Taking α and ω as in Lemma 4, we see that
∑

i ḡ (α) /N is bounded by the solution to

the program

max
(Y,p),r,a,w

1

N

∑
i

(
Er [ω (y)]− E(ai,r−i) [ω (y)]

)
s.t.

ω (y) ∈
[
0,

δ

1− δ ū
]

for all y,

Er [ω (y)] ≤ ū,

where the last line holds because Er [ω (y)] = u1 (r)− v̄1 ≤ ū. This is identical to the program

in the bounded-expected-reward case of Theorem 3, with w̄ = (δ/ (1− δ)) ū and c = ū. The

result therefore follows from Theorem 3.

G Proof of Proposition 1

We establish the stronger conclusion that, for any v ∈ V (ε) and any c ≥
√

8d/ε, there

exists v′ ∈ CE (cε) such that
∣∣∑

i∈I (vi − v′i)
∣∣ /N ≤ 4ū/c. (The stated conclusion follows by

taking c =
√

8d/ε.) Fix ε ∈ (0, d) and α ∈ A (ε). Let J = {i : ḡi (α) > cε/2}, and note
that |J | ≤ 2N/c. Let α̃ ∈ ∆ (A) be an action distribution that has the same marginal on

AI\J as α and that satisfies ḡi (α̃) ≤ cε for all i ∈ J : for example, take a Nash equilibrium
in the game among the players in J , where the action distribution among the players in

I\J is held fixed. Since
∣∣ui (a′j, a−j)− ui (a)

∣∣ ≤ d/N for all i 6= j, a′j, a, and the actions

of at most 2N/c players differ between α̃ and α, we have ḡi (α̃) ≤ ḡi (α) + 4d/c for each
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i ∈ I\J . Since ḡi (α) ≤ cε/2 (as i ∈ I\J) and 4d/c ≤ cε/2 (as c ≥
√

8d/ε), we have

ḡi (α̃) ≤ cε. Since we assumed that ḡi (α̃) ≤ cε for all i ∈ J , we have ḡi (α̃) ≤ cε for all

i ∈ I, and hence u (α̃) ∈ CE (cε). Finally, since the actions of at most 2N/c players differ

between α̃ and α, we have |ui (α̃)− ui (α)| ≤ 2d/c ≤ 2ū/c for all i ∈ I\J , and by definition
of ū we have |ui (α̃)− ui (α)| ≤ ū for all i ∈ J . Since c > 2 and |J | ≤ 2N/c, we have∣∣∑

i∈I (ui (α̃)− ui (α))
∣∣ ≤ (N − 2N/c) 2ū/c+ (2N/c) ū ≤ 4Nū/c.
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Online Appendix

H Proof of Theorem 7

H.1 Preliminaries

Fix any ε > 0. If ε ≥ ū/2 then B (ε) = ∅ and the conclusion of the theorem is trivial, so
assume without loss that ε < ū/2. We begin with two preliminary lemmas. First, for each
i ∈ I and ri ∈ Ai, we define a function fi,ri : Yi → R that will later be used to specify player
i’s continuation payoff as a function of yi.

Lemma 5 Under η-individual identifiability, for each i ∈ I and ri ∈ Ai there exists a
function fi,ri : Yi → R such that

E [fi,ri (yi) |ri]− E [fi,ri (yi) |ai] ≥ ū for all ai 6= ri, (13)

E [fi,ri (yi) |ri] = 0, (14)

Var (fi,ri (yi) |ri) ≤ ū2/η2, and (15)

|fi,ri (yi)| ≤ 2ū/η2 for all yi. (16)

Proof. Fix i and ri. Let Y ∗i = {yi : pi (yi, ri) ≥ η2}, and let

pi (ri) =
(√

pi (yi|ri)
)
yi∈Y ∗i

and Pi (ri) =
⋃
ai 6=ri

(
pi (yi|ai)√
pi (yi|ri)

)
yi∈Y ∗i

.

Note that (9) is equivalent to d (pi (ri) , co (Pi (ri))) ≥ η for all i ∈ I, ri ∈ Ai, where d (·, ·)
denotes Euclidean distance in R|Y ∗i |. Hence, by the separating hyperplane theorem, there
exists x = (x (yi))yi∈Y ∗i ∈ R

|Y ∗i | such that ‖x‖ = 1 and (pi (ri)− p) · x ≥ η for all p ∈ Pi (ri).
By definition of pi and Pi, this implies that

∑
yi∈Y ∗i

(pi (yi|ri)− pi (yi|ai))x (yi) ≥ η
√
pi (yi|ri)

for all ai 6= ri. Now define

fi,ri (yi) =
ū

η

(
x (yi)√
pi (yi|ri)

−
∑
ỹi∈Yi

p (ỹi|ri)√
pi (ỹi|ri)

xi (ỹi)

)
for all yi ∈ Y ∗i , and

fi,ri (yi) = 0 for all yi /∈ Y ∗i .

Clearly, conditions (13) and (14) hold. Moreover, since E [fi,ri (yi) |ri] = 0 and the term∑
ỹi∈Yi

√
p (ỹi|ri)xi (ỹi) is independent of yi, we have

Var (fi,ri (yi) |ri) = E

[
ū2x (yi)

2

η2pi (yi|ri)

]
− E

[
ūxi (yi)

η
√
pi (yi|ri)

]2

≤ ū2

η2

∑
yi∈Y ∗i

x (yi)
2 ≤ ū2

η2
,
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and hence (15) holds. Finally, (16) holds since, for each yi ∈ Y ∗i ,

|fi,ri (yi)| ≤
ū

η

(
|x (yi)|+

∑
ỹi∈Y ∗i

p (ỹi|ri) |xi (ỹi)|√
pi (yi|ri)

)
≤ ū

η2

1 +
∑
ỹi∈Y ∗i

p (ỹi|ri)

 ≤ 2ū

η2
.

Now fix i ∈ I and ri ∈ Ai, and suppose that yi,t ∼ pi (·|ri) for each period t ∈ N,
independently across periods (which would be the case in the repeated game if ri were taken
in every period). By (15), for any T ∈ N, we have

Var

(
T∑
t=1

δt−1fi,ri (yi,t)

)
=

T∑
t=1

δ2(t−1)Var (fi,ri (yi,t)) ≤
1− δ2T

1− δ2

ū2

η2
.

Together with (14) and (16), Bernstein’s inequality (Boucheron, Lugosi, and Massart, 2013,
Theorem 2.10) now implies that, for any T ∈ N and f̄ ∈ R+, we have

Pr

(
T∑
t=1

δt−1fi,ri (yi,t) ≥ f̄

)
≤ exp

− f̄ 2η2

2
(

1−δ2T
1−δ2 ū

2 + 2
3
f̄ ū
)
 . (17)

Our second lemma fixes T and f̄ so that the bound in (17) is suffi ciently small, and some
other conditions used in the proof also hold.

Lemma 6 There exists k > 0 such that, whenever (1− δ) log (N) /η2 < k, there exist T ∈ N
and f̄ ∈ R that satisfy the following three inequalities:

60ūN exp

−
(
f̄
3

)2

η2

2
(

1−δ2T
1−δ2 ū

2 + 2
3
f̄
3
ū
)
 ≤ ε, (18)

8
1− δ

1− δT
(
f̄ +

2ū

η2

)
≤ ε, (19)

4ū
1− δT

δT
+

1− δ
δT

(
f̄ +

2ū

η2

)
≤ ε. (20)

Proof. Let T be the largest integer such that 8ū
(
1− δT

)
/δT ≤ ε, and let

f̄ =

√
36 log

(
60ū

ε

)
log (N)

1− δT

1− δ
ū2

η2
.
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Note that if (1− δ) log (N) /η2 → 0 then 1−δT → ε/ (ε+ 8ū), and hence (1− δ) log (N) /
(
η2
(
1− δT

))
→

0. Therefore, there exists k > 0 such that, whenever (1− δ) log (N) /η2 < k, we have

4

9

√
36 log

(
60ū

ε

)
log (N)

1− δ
1− δT

1

η2
≤ 1 and (21)

8ū

(√
36 log

(
60ū

ε

)
log (N)

1− δ
1− δT

1

η2
+

1− δ
1− δT

2

η2

)
≤ ε. (22)

It now follows from straightforward algebra (provided in Appendix H.4) that (18)—(20) hold
for every k ≥ k̄.

H.2 Equilibrium Construction

Fix any k, T , and f̄ that satisfy (18)—(20), as well any v ∈ B (ε). For each extreme point
v∗ of Bv (ε/2), we construct a PPE in a T -period, finitely repeated game augmented with
continuation values drawn from Bv (ε/2) that generates payoff vector v∗. By standard argu-
ments, this implies that Bv (ε/2) ⊆ E (Γ), and hence that v ∈ E (Γ).27 Since v ∈ B (ε) was
chosen arbitrarily, it follows that B (ε) ⊆ E (Γ).
Specifically, for each ζ ∈ {−1, 1}N and v∗ = argmaxv∈Bv(ε/2) ζ · v, we construct a public

strategy profile σ in a T -period, finitely repeated game (which we call a block strategy profile)
together with a continuation value function w : HT+1 → RN such that, letting ψi

(
hT+1

)
=

δT

1−δ
(
wi
(
hT+1

)
− v∗i

)
, we have

Promise Keeping: v∗i =
1− δ

1− δT
Eσ
[

T∑
t=1

δt−1ui,t + ψi
(
hT+1

)]
for all i, (23)

Incentive Compatibility: σi ∈ argmax
σ̃i

Eσ̃i,σ−i
[

T∑
t=1

δt−1ui,t + ψi
(
hT+1

)]
for all i, (24)

Self Generation: ζ iψi
(
hT+1

)
∈
[
− δT

1− δ ε, 0
]

for all i and hT+1. (25)

Fix ζ ∈ {−1, 1}N and v∗ = argmaxv∈Bv(ε/2) ζ · v. We construct a block strategy profile σ
and continuation value function ψ which, in the next subsection, we show satisfy these three
conditions. This will complete the proof of the theorem.
First, fix a correlated action profile ᾱ ∈ ∆ (A) such that

ui (ᾱ) = v∗i + ζ iε/2 for all i, (26)

and fix a probability distribution over static Nash equilibria αNE ∈ ∆ (
∏

i ∆ (Ai)) such that
ui
(
αNE

)
≤ v∗i − ε/2 for all i. Such ᾱ and αNE exist because v∗ ∈ Bv (ε/2) and Bv (ε) ⊆ F ∗.

27Specifically, at each history hT+1 that marks the end of a block, public randomization can be used
to select an extreme point v∗ to be targeted in the following block, with probabilities chosen so that the
expected payoff E [v∗] equals the promised continuation value w

(
hT+1

)
.
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We now construct the block strategy profile σ. For each player i ∈ I and period t ∈
{1, . . . , T}, we define a state θi,t ∈ {0, 1} for player i in period t. The states are determined
by the public history, and so are common knowledge among the players. We first specify
players’prescribed actions as a function of the state, and then specify the state as a function
of the public history.
Prescribed Equilibrium Actions: For each period t, let rt ∈ A be a pure action

profile which is drawn by public randomization at the start of period t from the distribution
ᾱ ∈ ∆ (A) fixed in (26), and let %NEt ∈

∏
i ∆ (Ai) be a mixed action profile which is drawn

by public randomization at the start of period t from the distribution αNE. The prescribed
equilibrium actions are defined as follows.

1. If θi,t = 0 for all i ∈ I, the players take at = rt.

2. If there is a unique player i such that θi,t = 1, the players take at = (r′i, r−i,t) for
some r′i ∈ BRi (r−i,t) if ζ i = 1, and they take %NEt if ζ i = −1, where BRi (r−i) =
argmaxai∈Ai ui (ai, r−i) is the set of i’s best responses to r−i.

3. If there is more than one player i such that θi,t = 1, the players take %NEt .

Let α∗t ∈
∏

i ∆ (Ai) denote the distribution of prescribed equilibrium actions, prior to
public randomization zt.
(It may be helpful to informally summarize the prescribed actions. So long as θi,t = 0 for

all players, the players take actions drawn from the target action distribution ᾱ. If θi,t = 1
for multiple players, the ineffi cient Nash equilibrium distribution αNE is played. If θi,t = 1
for a unique player i, player i starts taking static best responses; moreover, if ζ i = −1 then
αNE is played.)
It will be useful to introduce the following additional state variable Si,t, which summarizes

player i’s prescribed action as a function of (θj,t)j∈I :

1. Si,t = 0 if θj,t = 0 for all j ∈ I, or if there exists a unique player j 6= i such that
θj,t = 1, and for this player we have ζj = 1. In this case, player i is prescribed to take
ai,t = ri,t.

2. Si,t = NE if θi,t = 0 and either (i) there exists a unique player j such that θj,t = 1,
and for this player we have ζj = −1, or (ii) there are two distinct players j, j′ such
that θj,t = θj′,t = 1. In this case, player i is prescribed to take %NEi,t .

3. Si,t = BR if θi,t = 1. In this case, player i is prescribed to best respond to her
opponents’actions (which equal either r−i,t or %NE−i,t, depending on ζ i and (θj,t)j 6=i.)

States: At the start of each period t, conditional on the public randomization draw of
rt ∈ A described above, an additional (“fictitious”) random variable ỹt ∈ Y is also drawn
by public randomization, with distribution p (ỹt|rt). That is, the distribution of the public
randomization draw ỹt conditional on the draw rt is the same as the distribution of the
realized public signal profile ỹt at action profile rt; however, the distribution of ỹt depends
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only on the public randomization draw rt and not on the players’actions. For each player i
and period t, let fi,ri,t : Yi → R be defined as in Lemma 5, and let

fi,t =


fi,ri,t (yi,t) if Si,t = 0,
fi,ri,t (ỹi,t) if Si,t = NE,
0 if Si,t = BR.

(27)

Thus, the value of fi,t depends on the state (θn,t)n∈I , the target action profile rt (which
is drawn from distribution ᾱ as described above), the public signal yt, and the additional
variable ỹt.28 Later in the proof, fi,t will be a component of the “reward”earned by player
i in period t, which will be reflected in player i’s end-of-block continuation payoff function
ψ : HT+1 → R.
We can finally define θi,t as

θi,t = 1

{
∃t′ ≤ t :

∣∣∣∣∣
t′−1∑
t′′=1

δt
′′−1fi,t′′

∣∣∣∣∣ ≥ f̄

}
. (28)

That is, θi,t is the indicator function for the event that the magnitude of the component of
player i’s reward captured by (fi,t′′)

t′−1
t′′=1 exceeds f̄ at any time t

′ ≤ t.
This completes the definition of the equilibrium block strategy profile σ. Before proceed-

ing further, we note that a unilateral deviation from σ by any player i does not affect the

distribution of the state vector
(

(θj,t)j 6=i

)T
t=1
. (However, such a deviation does affect the

distribution of (θi,t)
T
t=1.)

Lemma 7 For any player i and block strategy σ̃i, the distribution of the random vector(
(θj,t)j 6=i

)T
t=1

is the same under block strategy profile (σ̃i, σ−i) as under block strategy profile
σ.

Proof. Since θj,t = 1 implies θj,t+1 = 1, it suffi ces to show that, for each t, each J ⊆ I\ {i},
each ht such that J = {j ∈ I\ {i} : θj,t = 0}, and each zt, the probability Pr

(
(θj,t+1)j∈J |ht, zt, ai,t

)
is independent of ai,t. Since θj,t+1 is determined by ht and fj,t, it is enough to show that

Pr
(

(fj,t)j∈J |ht, zt, ai,t
)
is independent of ai,t.

Recall that Sj,t is determined by ht, and that if j ∈ J (that is, θj,t = 0) then Sj,t ∈
{0, NE}. If Sj,t = 0 then player j takes rj,t, which is determined by zt, yj,t is distributed ac-
cording to pj (yj,t|rj,t), and fj,t is determined by yj,t, independently across players conditional
on zt. If Sj,t = NE then ỹj,t is distributed according to pj (ỹj,t|rj,t), where rj,t is determined
by zt, and fj,t is determined by ỹj,t, independently across players conditional on zt. Thus,

Pr
(

(fj,t)j∈J |ht, zt, ai,t
)

=
∏

j 6=i Pr (fj,t|Sj,t, rj,t), which is independent of ai,t as desired.
Continuation Value Function: We now construct the continuation value function

ψ : HT+1 → RN . For each player i and end-of-block history hT+1, player i’s continuation

28Intuitively, introducing the variable ỹt, rather than simply using yi,t everywhere in (27), ensures that
the distribution of fi,t does not depend on player i’s opponents’strategies.
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value ψi
(
hT+1

)
will be defined as the sum of T “rewards”ψi,t, where t = 1, . . . , T , and a

constant term ci that does not depend on hT+1.
The rewards ψi,t are defined as follows:

1. If θj,t = 0 for all j ∈ I, then

ψi,t = δt−1fi,ri,t (yi,t) . (29)

2. If θi,t = 1 and θj,t = 0 for all j 6= i, then

ψi,t = δt−1 (ui (ᾱ)− ui (α∗t )) . (30)

3. Otherwise,
ψi,t = δt−1

(
−ζ iū− ui (α∗t ) + 1 {Si,t = 0} fi,ri,t (yi,t)

)
. (31)

The constant ci is defined as

ci = −E
[

T∑
t=1

δt−1

(
1

{
max
j 6=i

θj,t = 0

}
ui (ᾱ)− 1

{
max
j 6=i

θj,t = 1

}
ζ iū

)]
+

1− δT

1− δ v
∗
i . (32)

Note that, since ui (ᾱ) and v∗i are both feasible payoffs, we have

|ci| ≤ 2ū
1− δT

1− δ . (33)

Finally, for each i and hT+1, player i’s continuation value at end-of-block history hT+1 is
defined as

ψi
(
hT+1

)
= ci +

T∑
t=1

ψi,t. (34)

H.3 Verification of the Equilibrium Conditions

We now verify that σ and ψ satisfy promise keeping, incentive compatibility, and self gen-
eration. We first show that θi,t = 0 for all i and t with high probability, and then verify the
three desired conditions in turn.

Lemma 8 We have

Pr

(
max

i∈I,t∈{1,...,T}
θi,t = 0

)
≥ 1− ε

20ū
. (35)

Proof. By union bound, it suffi ces to show that, for each i, Pr
(
maxt∈{1,...,T} θi,t = 1

)
≤

ε/20ūN , or equivalently

Pr

(
max

t∈{1,...,T}

∣∣∣∣∣
t∑

t′=1

δt−1fi,t′

∣∣∣∣∣ ≥ f̄

)
≤ ε

20ūN
. (36)
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To see this, let f̃i,t = fi,ri,t (ỹi,t). Note that the variables
(
f̃i,t

)T
t=1
are independent (unlike the

variables (fi,t)
T
t=1). Since

(
f̃i,t′
)t
t′=1

and (fi,t′)
t
t′=1 have the same distribution if Si,t 6= BR,

while fi,t = 0 if Si,t = BR, we have

Pr

(
max

t∈{1,...,T}

∣∣∣∣∣
t∑

t′=1

δt−1fi,t′

∣∣∣∣∣ ≥ f̄

)
≤ Pr

(
max

t∈{1,...,T}

∣∣∣∣∣
t∑

t′=1

δt−1f̃i,t′

∣∣∣∣∣ ≥ f̄

)
. (37)

Since
(
f̃i,t

)T
t=1

are independent, Etemadi’s inequality (Billingsley, 1995; Theorem 22.5) im-

plies that

Pr

(
max

t∈{1,...,T}

∣∣∣∣∣
t∑

t′=1

δt−1f̃i,t′

∣∣∣∣∣ ≥ f̄

)
≤ 3 max

t∈{1,...,T}
Pr

(∣∣∣∣∣
t∑

t′=1

δt−1f̃i,t′

∣∣∣∣∣ ≥ f̄

3

)
. (38)

Letting xi,t = δt−1f̃i,t, note that |xi,t| ≤ 2ū/η2 with probability 1 by (16), E [xi,t] = 0 by (14),
and

Var

(
t∑

t′=1

xi,t′

)
=

t∑
t′=1

Var (xi,t′) ≤
T∑
t′=1

Var (xi,t′) =
1− δT

1− δ
ū2

η2
by (15).

Therefore, by Bernstein’s inequality ((17), which again applies because
(
f̃i,t

)T
t=1

are inde-

pendent) and (18), we have, for each t ≤ T ,

Pr

(∣∣∣∣∣
t∑

t′=1

δt
′−1f̃i,t′

∣∣∣∣∣ ≥ f̄

3

)
≤ ε

60ūN
. (39)

Finally, (37), (38), and (39) together imply (36).
Incentive Compatibility: We use the following lemma (proof in Appendix H.5).

Lemma 9 For each player i and block strategy profile σ, incentive compatibility holds (i.e.,
(24) is satisfied) if and only if

suppσi
(
ht
)
⊆ argmax

ai,t∈Ai
Eσ−i

[
δt−1ui,t + ψi,t|ht, ai,t

]
for all t and ht. (40)

In addition, for all t ≤ t′ and ht, we have

Eσ
[
δt
′−1ui,t + ψi,t′|ht

]
= Eσ

[
δt
′−1

(
1

{
max
j 6=i

θj,t′ = 0

}
ui (ᾱ)− 1

{
max
j 6=i

θj,t′ = 1

}
ζ iū

)
|ht
]
.

(41)

We now verify that (40) holds. Fix a player i, period t, and history ht. We consider
several cases, which parallel the definition of the reward ψi,t.

1. If θj,t = 0 for all j ∈ I, recall that the equilibrium action profile is the rt that is
prescribed by public randomization zt. For each action ai 6= ri,t, by (13) and (29), and
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recalling that ū ≥ maxa ui (a)−mina ui (a), we have

Eσ−i
[
δt−1ui,t + ψi,t|ht, zt, ai,t = ri,t

]
− Eσ−i

[
δt−1ui,t + ψi,t|ht, zt, ai,t = ai

]
= δt−1

(
E
[
ui (rt) + fi,ri,t (yi,t) |ai,t = ri,t

]
− E

[
ui (ai, r−i,t) + fi,ri,t (yi,t) |ai,t = ai

])
≤ 0, so (40) holds.

2. If θi,t = 1 and θj,t = 0 for all j 6= i, then the reward ψi,t specified by (30) does not
depend on yi,t. Hence, (40) reduces to the condition that every action in suppσi (h

t)
is a static best responses to σ−i (ht). This conditions holds for the prescribed action
profile, (r′i ∈ BRi (r−i,t) , r−i,t) or %NEi,t .

3. Otherwise: (a) If Si,t = 0, then (40) holds because it holds in Case 1 above and (29)
and (31) differ only by a constant independent of yi,t. (b) If Si,t 6= 0, then either
θj,t = θj′,t = 1 for distinct players j, j′, or there exists a unique player j 6= i with
θj,t = 1, and for this player we have ζj = −1. In both cases, %NEt is prescribed. Since
the reward ψi,t specified by (31) does not depend on yi,t, (40) reduces to the condition
that every action in suppσi (h

t) is a static best responses to σ−i (ht), which holds for
the prescribed action profile %NEt .

Promise Keeping: This essentially holds by construction: we have

1− δ
1− δT

Eσ
[

T∑
t=1

δt−1ui,t + ψi
(
hT+1

)]

=
1− δ

1− δT

(
Eσ
[

T∑
t=1

(
δt−1ui,t + ψi,t

)]
+ ci

)
(by (34))

=
1− δ

1− δT
Eσ
[

T∑
t=1

δt−1

(
1

{
max
j 6=i

θj,t = 0

}
ui (ᾱ)− 1

{
max
j 6=i

θj,t = 1

}
ζ iū

)
+ ci

]
(by (41))

= v∗i (by (32)), so (23) holds.

Self Generation: We use the following lemma (proof in Appendix H.6).

Lemma 10 For every end-of-block history hT+1, we have

ζ i

T∑
t=1

ψi,t ≤ f̄ +
2ū

η2
and (42)∣∣∣∣∣

T∑
t=1

ψi,t

∣∣∣∣∣ ≤ f̄ +
2ū

η2
+ 2ū

1− δT

1− δ . (43)

In addition,

ζ ici ≤ −
1− δT

1− δ
ε

8
. (44)
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To establish self generation ((25)), it suffi ces to show that, for each hT+1, ζ iψi
(
hT+1

)
≤ 0

and
∣∣ψi (hT+1

)∣∣ ≤ (δT/ (1− δ)
)
ε. This now follows because

ζ iψi
(
hT+1

)
= ζ i

(
ci +

T∑
t=1

ψi,t

)
≤ −1− δT

1− δ
ε

8
+ f̄ + 2ū/η2 (by (42) and (44))

≤ 1− δT

8 (1− δ)

(
−ε+ 8

(
1− δ

1− δT
)(

f̄ + 2ū/η2
))
≤ 0 (by (19)), and

∣∣ψi (hT+1
)∣∣ ≤ |ci|+

∣∣∣∣∣
T∑
t=1

ψi,t

∣∣∣∣∣
≤ 4ū

1− δT

1− δ + f̄ + 2ū/η2 (by (33) and (43))

=
1− δT

1− δ 4ū+ f̄ + 2ū/η2 ≤ δT

1− δ ε (by (20)),

which completes the proof.

H.4 Omitted Details for the Proof of Lemma 6

We show that, with the stated definitions of T and f̄ , (21) and (22) imply (18)—(20). First,
note that

1− δ2

1− δ2T
=

(1 + δ) (1− δ)(
1 + δT

) (
1− δT

) < 2
1− δ

1− δT
.

Hence,

2f̄
(
1− δ2

)
9ū
(
1− δ2T

) <
4

9ū

1− δ
1− δT

√
36 log

(
60ū

ε

)
log (N)

1− δT

1− δ
ū2

η2

=
4

9

√
36 log

(
60ū

ε

)
log (N)

1− δ
1− δT

1

η2
≤ 1 (by (21)).

Therefore,

60ūN exp

 −
(
f̄
3

)2

η2

2
(

1−δ2T
1−δ2 ū

2 + 2
3
f̄
3
ū
)
 ≤ 60ūN exp

 −
(
f̄
3

)2

η2

2
(

1−δ2T
1−δ2 ū

2 + 1−δ2T
1−δ2 ū

2
)
 = 60ūN exp

(
−f̄ 2η2

361−δ2T
1−δ2 ū

2

)
.

Moreover,

f̄ 2η2

361−δ2T
1−δ2 ū

2
=

36 log
(

60ū
ε

)
log (N) 1−δT

1−δ

361−δ2T
1−δ2

=
1 + δ

1 + δT
log

(
60ū

ε

)
log (N) ≥ log

(
60ū

ε

)
log (N) .
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Hence, we have

60ūN exp

 −
(
f̄
3

)2

η2

2
(

1−δ2T
1−δ2 ū

2 + 2
3
f̄
3
ū
)
 ≤ 60ūN exp

(
− log

(
60ū

ε

)
log (N)

)
= ε.

This establishes (18).
Next, we have

8
1− δ

1− δT
(
f̄ +

2ū

η2

)
= 8ū

(√
36 log

(
60ū

ε

)
log (N)

1− δ
1− δT

1

η2
+

1− δ
1− δT

2

η2

)
≤ ε (by (22)).

(45)
This establishes (19).
Finally, by (45) and 8ū

(
1− δT

)
/δT ≤ ε, we have

4ū
1− δT

δT
+

1− δ
δT

(
f̄ +

2ū

η2

)
= 4ū

1− δT

δT
+

1− δT

δT
1− δ

1− δT
(
f̄ +

2ū

η2

)
≤ 4

ε

8
+
ε

8

ε

8
≤ ε.

This establishes (20).

H.5 Proof of Lemma 9

We show that player i has a profitable one-shot deviation from σi at some history ht if and
only if (40) is violated at ht. To see this, we first calculate player i’s continuation payoff
under σ from period t + 1 onward (net of the constant ci and the rewards already accrued∑t

t′=1 ψi,t′). For each t
′ ≥ t+ 1, there are several cases to consider.

1. If θj,t′ = 0 for all j, then by (14) and (29) we have

Eσ
[
δt
′−1ui,t′ + ψi,t′|ht

′
]

= δt
′−1
(
ui (α

∗
t′) + E

[
fi,ri,t′ (yi,t′) |ri,t′

])
= δt

′−1ui (ᾱ).

2. If θi,t′ = 1 and θj,t′ = 0 for all j 6= i, then by (30) we have

Eσ
[
δt
′−1ui,t′ + ψi,t′|ht

′
]

= δt
′−1 (ui (α

∗
t′) + ui (ᾱ)− ui (α∗t′)) = δt

′−1ui (ᾱ).

3. Otherwise: (a) If Si,t′ = 0, then by (14) and (31) (and recalling that player i’s equilib-
rium action is ri,t′ when Si,t′ = 0) we have

Eσ
[
δt
′−1ui,t′ + ψi,t′|ht

′
]

= δt
′−1
(
ui (α

∗
t′)− ζ iū− u (α∗t′) + E

[
fi,ri,t′ (yi,t′) |ri,t′

])
= δt

′−1 (−ζ iū).

(b) If Si,t′ 6= 0, then by (31) we have

Eσ
[
δt
′−1ui,t′ + ψi,t′|ht

′
]

= δt
′−1 (ui (α

∗
t′)− ζ iū− u (α∗t′)) = δt

′−1 (−ζ iū).

In total, (41) holds, and player i’s net continuation payoff under σ from period t + 1
onward equals

Eσ
[

T∑
t′=t+1

δt
′−1

(
1

{
max
j 6=i

θj,t′ = 0

}
ui (ᾱ)− 1

{
max
j 6=i

θj,t′ = 1

}
ζ iū

)
|ht
]
.
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By Lemma 7, the distribution of
(

(θn,t′)n6=i

)T
t′=t+1

does not depend on player i’s period-t

action, and hence neither does player i’s net continuation payoff under σ from period t + 1
onward. Therefore, player i’s period-t action ai,t maximizes her continuation payoff from
period t onward if and only if it maximizes Eσ−i [δt−1ui,t + ψi,t|ht, ai,t].

H.6 Proof of Lemma 10

Define

ψvi,t =

{
δt−1 (ui (ᾱ)− ui (α∗t )) if θj,t = 0 for all j 6= i,
δt−1 (−ζ iū− ui (α∗t )) otherwise,

and

ψfi,t =

{
δt−1fi,ai,t (yi,t) if either θj,t = 0 for all j or Si,t = 0,
0 otherwise.

Note that, by (29)—(31), we can write ψi,t = ψvi,t + ψfi,t. (Note that, if θn,t = 0 for all n ∈ I,
we have α∗t = ᾱ and hence ψvi,t + ψfi,t = δt−1fi,ai,t (yi,t), as specified in (29).) We show that,
for every end-of-block history hT+1, we have

ζ i

T∑
t=1

ψvi,t ∈
[
−2ū

1− δT

1− δ , 0
]

and (46)∣∣∣∣∣ζ i
T∑
t=1

ψfi,t

∣∣∣∣∣ ≤ f̄ +
2ū

η2
. (47)

Since ψi,t = ψvi,t + ψfi,t, (46) and (47) imply (42) and (43), which proves the first part of the
lemma.
For (46), note that, by definition of the prescribed equilibrium actions, if θj,t = 0 for all

j 6= i, then (i) if ζ i = 1, we have ui (α∗t ) ≥
∑

a ᾱ (a) min
{
ui (a) ,maxa′i ui (a

′
i, a−i)

}
≥ ui (ᾱ);

and (ii) if ζ i = −1, we have ui (α∗t ) ≤ max
{
ui (ᾱ) , ui

(
αNE

)}
= ui (ᾱ). In total, we have

ζ i (ui (ᾱ)− ui (α∗t )) ≤ 0. Since obviously ζ i (ui (ᾱ)− ui (α∗t )) ≥ −2ū and −ū − ζ iui (α∗t ) ≥
−2ū, we have

ζ iψ
v
i,t =

{
δt−1ζ i (ui (ᾱ)− ui (α∗t )) if θj,t = 0 for all j 6= i,
δt−1 (−ū− ζ iui (α∗t )) otherwise

∈
[
−2ūδt−1, 0

]
.

For (47), note that Si,t = 0 implies θi,t = 0, and hence∣∣∣∣∣ζ i
T∑
t=1

ψfi,t

∣∣∣∣∣ ≤
∣∣∣∣∣ζ i

T∑
t=1

1 {θi,t = 0} δt−1fi,ai,t (yi,t)

∣∣∣∣∣ .
Since θi,t+1 = 1 whenever

∣∣∣∑t′=1,..,t δ
t−1fi,ai,t (yi,t)

∣∣∣ ≥ f̄ , and in addition
∣∣fi,ai,t (yi,t)

∣∣ ≤ 2ū/η2

by (16), this inequality implies (47).
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For the second part of the lemma, by (32), we have

ζ ici = ζ i

(
−E

[
T∑
t=1

δt−1

(
1

{
max
j 6=i

θj,t = 0

}
ui (ᾱ)− 1

{
max
j 6=i

θj,t = 1

}
ζ iū

)]
+

1− δT

1− δ v
∗
i

)

= E

 T∑
t=1

δt−1

1{max
j 6=i

θj,t = 0

}
ζ i (v

∗
i − ui (ᾱ)) + 1

{
max
j 6=i

θj,t = 1

}
(ū+ ζ iv

∗
i )︸ ︷︷ ︸

∈[0,2ū]




≤ E

[
T∑
t=1

δt−1

(
1

{
max
j 6=i

θj,t = 0

}(
−ε
2

)
+ 1

{
max
j 6=i

θj,t = 1

}
2ū

)]
by (26)

≤ −1− δT

1− δ

((
1− ε

20ū

) ε
2

+
( ε

20ū

)
2ū
)

(by (35))

≤ −1− δT

1− δ
ε

8
(as ε < ū/2).
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